# The global electroweak fit at NNLO and prospects for the LHC and ILC

## Abstract

For a long time, global fits of the electroweak sector of the standard model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC) and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using the latest NNLO theoretical predictions and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and we examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.

## 1 Introduction

Global fits of the standard model (SM) have traditionally combined electroweak precision observables with accurate theoretical predictions to constrain the top-quark and Higgs boson masses [1, 2, 3, 4, 5]. The discovery of a scalar boson at the Large Hadron Collider (LHC) [6, 7], with mass \(M_{H}\) around 125 GeV, provides an impressive confirmation of the light Higgs prediction derived from these fits. Assuming the new boson to be the SM Higgs boson and inserting the measured mass into the fit overconstrains the electroweak sector of the SM. Key electroweak observables such as the \(W\) boson mass, \(M_W\), and the effective weak mixing angle for charged and neutral leptons and light quarks, \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\), can thus be predicted with a precision exceeding that of the direct measurements [8]. These observables become sensitive probes of new physics [9] limited in part by the accuracy of the theoretical calculations.

Recently, full fermionic two-loop calculations have become available for the partial widths and branching ratios of the \(Z\) boson [10]. These new calculations improve the theoretical precision and also allow for a more meaningful estimate of the theoretical uncertainties due to missing higher perturbative orders. In this paper we present an update of the global electroweak fit performed at the two-loop level,^{1} including a detailed assessment of the impact of the remaining theoretical uncertainties.

Measurements performed at future colliders will increase the experimental precision of these and other electroweak observables, such as the top-quark mass, \(m_t\). The coming years should also lead to progress in the calculation of multi-loop corrections to these observables, as well as to an improved determination of the hadronic contribution to the fine-structure constant evaluated at the \(Z\) boson mass scale, \(\Delta \alpha _\mathrm{had}(M_Z^2)\).

In this paper, the latest results of the global electroweak fit are compared with the expectations for the Phase-1 LHC^{2} and the International Linear Collider (ILC) with GigaZ option,^{3} henceforth denoted ILC/GigaZ [11]. For each scenario we analyse the impact of the assigned experimental and theoretical uncertainties. By exploiting contributions from radiative corrections, the global electroweak fit is also used to determine the couplings of the Higgs boson to gauge bosons using the formalism of the \(S,T,U\) parameters. We combine the constraints on the Higgs couplings in a popular benchmark model with LHC measurements of the signal strength in various channels. We also study the prospects for these constraints.

The paper is organised as follows. An update of the global electroweak fit including the recent theoretical improvements is presented in Sect. 2. Section 3 discusses the extrapolated uncertainties of key input observables for the LHC and ILC/GigaZ scenarios, the fit prospects and a detailed analysis of the impact of all sources of systematic uncertainties. The status and prospects for the determinations of Higgs couplings from the electroweak fit are reported in Sect. 4.

## 2 Update of the global electroweak fit

In the following we present an update of the global electroweak fit at the \(Z\)-mass scale. The relevant observables, the data treatment and statistical framework are described in Refs. [3, 4]. We use the recent calculations of the \(Z\) boson partial widths and branching ratios at the electroweak two-loop order [10]. These provide for the first time a consistent set of calculations at next-to-next-to leading order (NNLO) for all relevant input observables, together with the two-loop calculations of the \(W\) mass and the effective weak mixing angle.

### 2.1 SM predictions and theoretical uncertainties

The effective weak mixing angle, \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\), has been calculated using corrections up to the full two-loop order \({\mathcal O}(\alpha \alpha _s)\) and \({\mathcal O}(\alpha ^2)\) [13, 14]. In addition, partial three-loop and four-loop terms have been included at order \({\mathcal O}(\alpha \alpha _s^2)\) [15, 16, 17], \({\mathcal O}(\alpha _t^2 \alpha _s)\), \({\mathcal O}(\alpha _t^3)\) [18, 19] and \({\mathcal O}(\alpha _t \alpha _s^3)\) [20, 21, 22], where \(\alpha _t = \alpha m_t^2\). These calculations have been included in the parametrisation provided in [13, 14]. For bottom quarks the calculation from [23] is used, which includes corrections of the same order together with additional vertex corrections from top-quark propagators.

The mass of the \(W\) boson, \(M_W\), has been calculated to the same orders of electroweak and QCD corrections as \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\). We use the parametrisation of the full two-loop result [24]. New in this paper is the inclusion of four-loop QCD corrections \({\mathcal O}(\alpha _t \alpha _s^3)\) [20, 21, 22], which result in a shift of the predicted \(M_W\) by about \(-2.2\) \(\mathrm {MeV}\) in the on-shell renormalisation scheme for \(m_t\). The exact value of the shift depends on the parameter settings used.

Full fermionic two-loop corrections \({\mathcal O}(\alpha ^2)\) for the partial widths and branching ratios of the \(Z\) boson have recently become available [10].

^{4}The parametrisation formulae provided include also higher-order terms to match the perturbative order of the calculations of \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\) and \(M_W\). These calculations amend previous two-loop predictions of the total \(Z\) width, \(\Gamma _Z\), the hadronic peak cross section, \(\sigma ^0_\mathrm{had}\) [25] and the partial decay width of the \(Z\) boson into \(b\bar{b}\), \(R^0_b\) [26].The dominant contributions from final-state QED and QCD radiation are included in the calculations through factorisable radiator functions \({\mathcal R}_{V,A}\), which are known up to \({\mathcal O}(\alpha _s^4)\) for massless final-state quarks, \({\mathcal O}(\alpha _s^3)\) for massive quarks [27, 28, 29] and \({\mathcal O}(\alpha ^2)\) for contributions with closed fermion loops [30]. Non-factorisable vertex contributions of order \({\mathcal O}(\alpha \alpha _s)\) [31, 32] are also accounted for.

The width of the \(W\) boson, \(\Gamma _W\), is known up to one electroweak loop order. We use the parametrisation given in [33], which is sufficient given the experimental precision.

Theory uncertainties taken into account in the global electroweak fit. See text for details

\(\delta _\mathrm{theo}M_W\) | 4 \(\mathrm {MeV}\) | \(\delta _\mathrm{theo}\Gamma _{u,c}\) | 0.12 \(\mathrm {MeV}\) |

\(\delta _\mathrm{theo}\sin \!^2\theta ^{f}_{\mathrm{eff}}\) | \(4.7\times 10^{-5}\) | \(\delta _\mathrm{theo}\Gamma _{b}\) | 0.21 \(\mathrm {MeV}\) |

\(\delta _\mathrm{theo}\Gamma _{e, \mu , \tau }\) | 0.012 \(\mathrm {MeV}\) | \(\delta _\mathrm{theo}\sigma ^0_\mathrm{had}\) | 6 pb |

\(\delta _\mathrm{theo}\Gamma _{\nu }\) | 0.014 \(\mathrm {MeV}\) | \(\delta _\mathrm{theo}{\mathcal R}_{V,A}\) | \({\sim }{\mathcal O}(\alpha _s^4)\) |

\(\delta _\mathrm{theo}\Gamma _{d,s}\) | 0.09 \(\mathrm {MeV}\) | \(\delta _\mathrm{theo}m_t\) | 0.5 \(\mathrm {GeV}\) |

For \(M_W\) and \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\) they arise from three dominant sources of unknown higher-order corrections: \(\mathcal{O}(\alpha ^2\alpha _{\scriptscriptstyle S})\) terms beyond the known contribution of \(\mathcal{O}({G_{\scriptscriptstyle F}^{2}} \alpha _{\scriptscriptstyle S}m_{t}^4)\), \(\mathcal{O}(\alpha ^3)\) electroweak three-loop corrections and \(\mathcal{O}(\alpha _{\scriptscriptstyle S}^3)\) QCD terms. Summing quadratically the relevant uncertainty estimates amounts to the overall theoretical uncertainties \(\delta _\mathrm{theo}M_W=4~\mathrm {MeV}\) [24] and \(\delta _\mathrm{theo}\sin \!^2\theta ^{f}_{\mathrm{eff}}=4.7 \times 10^{-5}\) [14].

The leading theoretical uncertainties on the predicted \(Z\) decay widths and \(\sigma ^0_\mathrm{had}\) come from missing two-loop electroweak bosonic \(\mathcal{O}(\alpha ^2)\) contributions, three-loop terms of order \(\mathcal{O}(\alpha ^3)\), \(\mathcal{O}(\alpha ^2\alpha _{\scriptscriptstyle S})\) and \(\mathcal{O}(\alpha \alpha _{\scriptscriptstyle S}^2)\) and \(\mathcal{O}(\alpha \alpha _{\scriptscriptstyle S}^3)\) corrections beyond the leading \(m_t^n\) terms. The resulting uncertainties \(\delta _\mathrm{theo}\Gamma _f\) are between \(0.012\) and \(0.21~\mathrm {MeV}\) (see Table 1). The theoretical uncertainty \(\delta _\mathrm{theo}\sigma ^0_\mathrm{had}\) amounts to 6 pb.

Uncertainties due to unknown higher-order contributions to the radiator functions \({\mathcal R}_{V,A}\) have been estimated by varying the \({\mathcal O}(\alpha _s^4)\) terms for the massless- and massive-quark contributions by factors of \(0\) to \(2\). The uncertainty due to the singlet vector contribution was found to be negligible.

We assign an additional theoretical uncertainty to the value of \(m_t\) from hadron collider measurements due to the ambiguity in the kinematic top-mass definition [34, 35, 36, 37], the colour structure of the fragmentation process [38, 39] and the perturbative relation between pole and \(\overline{\mathrm{MS}}\) mass currently known to three-loop order [40, 41]. The first uncertainty is difficult to assess. Estimates range from 0.25 to 0.9 \(\mathrm {GeV}\) or higher [37, 42]. Systematic effects on \(m_{t}\) due to mis-modelling of the colour reconnection in the fragmentation process, initial- and final-state radiation and the kinematics of the \(b\)-quark are partly considered as uncertainties by the experiments. They were also studied in a dedicated measurement by CMS [43] where no significant trends between the measurements under different conditions were observed. Finally, estimates of the missing higher-order perturbative correction to the relation between the pole and \(\overline{\mathrm{MS}}\) top-mass range from 0.2 to 0.3 \(\mathrm {GeV}\) uncertainty [44]. The nominal value of the combined \(m_{t}\) uncertainty is set here to 0.5 \(\mathrm {GeV}\). The impact of this uncertainty is studied below for values between 0 and 1.5 \(\mathrm {GeV}\).

Our previous publications [3, 4, 8] employed the *R*fit scheme, characterised by uniform likelihoods for the two theoretical nuisance parameters \(\delta _\mathrm{theo}M_W\) and \(\delta _\mathrm{theo}\sin \!^2\theta ^{f}_{\mathrm{eff}}\) used. It corresponds to a linear addition of theoretical and experimental uncertainties. In this analysis, with the ten theoretical nuisance parameters listed in Table 1, we use Gaussian constraints to stabilise the fit convergence. The Gaussian nuisance parameter treatment modifies how the theoretical uncertainties impact the fit. The resulting \(\chi ^2\) curve for a given fit parameter is narrower around its minimum value than that obtained with the *R*fit treatment, while it is broader for large deviations. This property should be kept in mind when interpreting the results.

### 2.2 Experimental input

Input values and fit results for the observables used in the global electroweak fit. The first and second columns list, respectively, the observables/parameters used in the fit and their experimental values or phenomenological estimates (see text for references). The third column indicates whether a parameter is floating in the fit. The fourth column quotes the results of the fit including all experimental data. In the fifth column the fit results are given without using the corresponding experimental or phenomenological estimate in the given row (indirect determination). The last column shows for illustration the result using the same fit setup as in the fifth column, but ignoring all theoretical uncertainties. The nuisance parameters that are used to parameterise theoretical uncertainties are given in Table 1

Parameter | Input value | Free in fit | Fit result | w/o exp. input in line | w/o exp. input in line, no theo. unc |
---|---|---|---|---|---|

\(M_{H}\) [GeV]\(^\mathrm{a}\) | \(125.14\pm 0.24\) | Yes | \(125.14\pm 0.24\) | \(93^{+25}_{-21}\) | \(93^{+24}_{-20}\) |

\(M_{W}\) [GeV] | \(80.385\pm 0.015\) | – | \(80.364\pm 0.007\) | \(80.358\pm 0.008\) | \(80.358\pm 0.006\) |

\(\Gamma _{W}\) [GeV] | \(2.085\pm 0.042\) | – | \(2.091\pm 0.001\) | \(2.091\pm 0.001\) | \(2.091\pm 0.001\) |

\(M_{Z}\) [GeV] | \(91.1875\pm 0.0021\) | Yes | \(91.1880\pm 0.0021\) | \(91.200\pm 0.011\) | \(91.2000\pm 0.010\) |

\(\Gamma _{Z}\) [GeV] | \(2.4952\pm 0.0023\) | – | \(2.4950\pm 0.0014\) | \(2.4946\pm 0.0016\) | \(2.4945\pm 0.0016\) |

\(\sigma _\mathrm{had}^{0}\) [nb] | \(41.540\pm 0.037\) | – | \(41.484\pm 0.015\) | \(41.475\pm 0.016\) | \(41.474\pm 0.015\) |

\(R^{0}_{\ell }\) | \(20.767\pm 0.025\) | – | \(20.743\pm 0.017\) | \(20.722\pm 0.026\) | \(20.721\pm 0.026\) |

\(A_\mathrm{FB}^{0,\ell }\) | \(0.0171\pm 0.0010\) | – | \(0.01626\pm 0.0001\) | \(0.01625\pm 0.0001\) | \(0.01625\pm 0.0001\) |

\(A_\ell \)\(^\mathrm{b}\) | \(0.1499\pm 0.0018\) | – | \(0.1472\pm 0.0005\) | \(0.1472\pm 0.0005\) | \(0.1472\pm 0.0004\) |

\(\sin \!^2\theta ^{\ell }_{\mathrm{eff}}\,(Q_\mathrm{FB})\) | \(0.2324\pm 0.0012\) | – | \(0.23150\pm 0.00006\) | \(0.23149\pm 0.00007\) | \(0.23150\pm 0.00005\) |

\(A_{c}\) | \(0.670\pm 0.027\) | – | \(0.6680\pm 0.00022\) | \(0.6680\pm 0.00022\) | \(0.6680\pm 0.00016\) |

\(A_{b}\) | \(0.923\pm 0.020\) | – | \(0.93463\pm 0.00004\) | \(0.93463\pm 0.00004\) | \(0.93463\pm 0.00003\) |

\(A_\mathrm{FB}^{0,c}\) | \(0.0707\pm 0.0035\) | – | \(0.0738\pm 0.0003\) | \(0.0738\pm 0.0003\) | \(0.0738\pm 0.0002\) |

\(A_\mathrm{FB}^{0,b}\) | \(0.0992\pm 0.0016\) | – | \(0.1032\pm 0.0004\) | \(0.1034\pm 0.0004\) | \(0.1033\pm 0.0003\) |

\(R^{0}_{c}\) | \(0.1721\pm 0.0030\) | – | \(0.17226^{\,+0.00009}_{\,-0.00008}\) | \(0.17226\pm 0.00008\) | \(0.17226\pm 0.00006\) |

\(R^{0}_{b}\) | \(0.21629\pm 0.00066\) | – | \(0.21578\pm 0.00011\) | \(0.21577\pm 0.00011\) | \(0.21577\pm 0.00004\) |

\(\overline{m}_c\) [GeV] | \(1.27^{\,+0.07}_{\,-0.11}\) | Yes | \(1.27^{\,+0.07}_{\,-0.11}\) | – | – |

\(\overline{m}_b\) [GeV] | \(4.20^{\,+0.17}_{\,-0.07}\) | Yes | \(4.20^{\,+0.17}_{\,-0.07}\) | – | – |

\(m_{t}\) [GeV] | \(173.34\pm 0.76\) | Yes | \(173.81\pm 0.85\) | \(177.0^{\,+2.3}_{\,-2.4}\)\(^\mathrm{c}\) | \(177.0\pm 2.3\)\(^\mathrm{c}\) |

\(\Delta \alpha _\mathrm{had}^{(5)}(M_Z^2)\)\(^\mathrm{d,e}\) | \(2757\pm 10\) | Yes | \(2756\pm 10\) | \(2723\pm 44\) | \(2722\pm 42\) |

\(\alpha _{s}(M_{Z}^{2})\) | – | Yes | \(0.1196\pm 0.0030\) | \(0.1196\pm 0.0030\) | \(0.1196\pm 0.0028\) |

### 2.3 Results of the SM fit

The fit of the electroweak theory to all input data from Table 2, including the theoretical uncertainties from Table 1, converges at a global minimum value of \(\chi ^2_{\mathrm{min}}= 17.8\), obtained for \(14\) degrees of freedom. Using pseudo experiments and the statistical method described in [3] we find a \(p\)-value for the SM to describe the data of \(0.21\) (corresponding to \(0.8\sigma \) one-sided significance). The improved goodness-of-fit compared to earlier results [8] comes mostly from the corrected calculation of \(R^0_b\) [26], which decreases the previously reported discrepancy of \(R^0_b\) between the global fit and the measurement from a pull value of \(-2.4\sigma \) down to \(-0.8\sigma \) (consistent with the one-loop calculation of \(R^0_b\)). The impact of this change on the other fit parameters is small. The new two-loop calculations of the \(Z\) partial widths decrease the value of \(\chi ^2_{\mathrm{min}}\) by 0.2, whereas the \({\mathcal O}(\alpha _t \alpha _s^3)\) four-loop QCD corrections to \(M_W\) increase \(\chi ^2_{\mathrm{min}}\) by 0.4 units.

The results of the full fit for each fit parameter and observable are given in the fourth column of Table 2, together with the uncertainties estimated from their \(\Delta \chi ^2=1\) profiles. The fifth column in Table 2 gives the results obtained without using in the fit the experimental measurement corresponding to that row. A more detailed discussion of these indirect determinations for several key observables is given in Sect. 3.2. The last column in Table 2 corresponds to the fits of the previous column but ignoring, for the purpose of illustration, all theoretical uncertainties. In this case the global fit converges at a slightly increased minimum value of \(\chi ^2_{\mathrm{min}}/ \mathrm{ndf}= 18.2/14\).

^{5}[8]. The right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct measurements with the indirect determination (fifth column of Table 2) for each observable in units of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect determination added in quadrature. Note that in the case of \(\alpha _{s}(M_{Z}^{2})\) the direct measurement displayed is the world average value [45], which is otherwise not used in the fit.

### 2.4 Oblique parameters

If the new physics scale is significantly higher than the electroweak scale, new physics effects from virtual particles in loops are expected to contribute predominantly through vacuum polarisation corrections to the electroweak precision observables. These terms are traditionally denoted *oblique corrections* and are conveniently parametrised by the three self-energy parameters \(S,T,U\) [50, 51]. These are defined to vanish in the SM and are closely related to the \(\epsilon _{1,2,3}\) parameters [52, 53].

The \(S\) and \(T\) parameters absorb possible new physics contributions to the neutral and to the difference between neutral and charged weak currents, respectively. The \(U\) parameter is only sensitive to changes in the mass and width of the \(W\) boson. It is very small in most new physics models and therefore often set to zero.

Constraints on the \(S,T,U\) parameters can be derived from the global electroweak fit by calculating the difference of the oblique corrections as determined from the experimental data and the corrections obtained from an SM reference point (with fixed reference values of \(m_t\) and \(M_H\)). With this definition significantly non-zero \(S,T,U\) parameters represent an unambiguous indication of new physics.

## 3 Prospects of the electroweak fit with the LHC and ILC/GigaZ

We use a simplified set of input observables to study the prospects of the electroweak fit for the Phase-1 LHC and the ILC/GigaZ. The measurements of the \(Z\) pole asymmetry observables are summarised in a single value of the effective weak mixing angle. The measurement of \(R^0_\ell \) is the only partial decay width that enters the fit to constrain \(\alpha _{\scriptscriptstyle S}\). This simplified fit setup leads in some cases to reduced constraints on observables as can be seen by comparing the uncertainties of the present scenarios between the last column of Table 2 and the fifth column of Table 3. The central values of the observables are adjusted to the values predicted by the current best fit giving a fully consistent set of SM observables.^{6}

### 3.1 Experimental and theoretical improvements

For \(m_H\) an uncertainty of 100 MeV is assumed, although the experiments are expected to exceed this precision using, for example, Higgs decays to four muons. Whatever uncertainty used is irrelevant for the fits discussed.

A precision of \(10\) MeV on \(M_W\) may be achievable for the final combination of Tevatron measurements [54]. Assuming improvements in the uncertainties due to parton distribution functions, the modelling of the lepton transverse momentum and a reduction of experimental uncertainties, we expect that a combined precision of \(8\) MeV may be in reach for a combination of the LHC, Tevatron and LEP results.

Given the present combined \(m_t\) uncertainty of \(0.76\) GeV [47], we assume an ultimate experimental precision of \(0.6\) GeV as a long-term prospect. As discussed earlier, an additional theoretical uncertainty of 0.5 \(\mathrm {GeV}\) is assigned. For the future LHC scenario, with further theoretical studies on the top-mass ambiguity, additional high-statistics tests of top-quark decay kinematics and a possible perturbative four-loop relation between pole and \(\overline{\mathrm{MS}}\) mass [41, 44], this uncertainty is assumed to be reduced to 0.25 \(\mathrm {GeV}\).

^{7}

A precision of 5 MeV is assumed for \(M_W\), obtained from cross section measurements at and above the \(WW\) production threshold [11].

Scans of the \(t\bar{t}\) production threshold are expected to yield an experimental precision on the top-quark mass of approximately \(30\) MeV [11, 44]. The conversion of the threshold to an \(\overline{\mathrm{MS}}\) mass using perturbative QCD adds an estimated uncertainty of 100 MeV [11, 40, 44], which is used as theoretical uncertainty \(\delta _\mathrm{theo}m_t\) in this scenario.

Measurements of the weak left–right asymmetry \(A_\mathrm{LR}\) from leptonic and hadronic \(Z\) decays are expected to yield a precision of \(1.3\times 10^{-5}\) for \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\) [11], improving the present measurement combination by more than a factor of 10.

The partial decay width of the \(Z\) boson, \(R_\ell ^0\), is assumed to be measured with a precision of \(4\times 10^{-3}\), improving the current measurement [55] by a factor of more than 6.

Current and extrapolated future uncertainties in the input observables (left) and the precision obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the second theoretical. The value of \(\alpha _{\scriptscriptstyle S}(M_Z^2)\) is not used directly as input in the fit. The uncertainty in the direct \(M_H\) measurements is not relevant for the fit and therefore not quoted. For all indirect determinations shown (including the present \(M_H\) determination) the assumed central values of the input measurements have been adjusted to obtain a common fit value of \(M_H=125\) GeV. The simplified fit setup used to derive the numbers in this table leads in some cases to reduced constraints on observables as can be seen by comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See text for more details

Parameter | Experimental input [\({\pm }1\sigma _\mathrm{exp}\)] | Indirect determination [\({\pm }1\sigma _\mathrm{exp}, {\pm }1\sigma _\mathrm{theo}\)] | ||||
---|---|---|---|---|---|---|

Present | LHC | ILC/GigaZ | Present | LHC | ILC/GigaZ | |

\( M_{H}\) [GeV] | \(0.2\) | \({<}0.1\) | \({<}0.1\) | \(_{-26}^{+31}, _{-8}^{+10}\) | \(_{-18}^{+20}, _{-3.2}^{+3.9}\) | \(_{-6.5}^{+6.8}, \; _{-2.4}^{+2.5}\) |

\( M_{W}\) [MeV] | \(15 \) | \( 8\) | \(5 \) | \( 6.0,5.0\) | \( 5.2,1.8\) | \( 1.9,1.3\) |

\( M_{Z}\) [MeV] | \(2.1\) | \(2.1\) | \(2.1\) | \(11,4\) | \( 7.0,1.4\) | \( 2.5,1.0\) |

\( m_{t}\) [GeV] | \(0.8\) | \(0.6\) | \(0.1\) | \( 2.4,0.6\) | \( 1.5,0.2\) | \(0.7,0.2\) |

\(\sin \!^2\theta ^{\ell }_{\mathrm{eff}}\)\([10^{-5}]\) | \(16\) | \(16\) | \(1.3\) | \(4.5,4.9 \) | \(2.8,1.1\) | \(2.0,1.0\) |

\( \Delta \alpha ^{5}_\mathrm{had}(M_Z^2)\)\([10^{-5}]\) | \(10\) | \(4.7\) | \(4.7\) | \( 42,13\) | \( 36,6\) | \( 5.6,3.0\) |

\( R_l^0 \)\([10^{-3}]\) | \(25\) | \(25\) | \(4\) | – | – | – |

\( \alpha _{\scriptscriptstyle S}(M_Z^2)\)\([10^{-4}]\) | – | – | – | \( 40,10\) | \(39,7\) | \(6.4,6.9\) |

\( S|_{U=0}\) | – | – | – | \( 0.094,0.027 \) | \(0.086,0.006 \) | \(0.017,0.006 \) |

\( T|_{U=0}\) | – | – | – | \( 0.083,0.023 \) | \( 0.064,0.005 \) | \( 0.022,0.005 \) |

\( \kappa _{V}\) (\(\lambda =3\) TeV) | \( 0.05\) | \( 0.03\) | \( 0.01\) | \( 0.02\) | \( 0.02\) | \( 0.01\) |

For both future scenarios we assume that the uncertainty in \(\Delta \alpha _\mathrm{had}^{(5)}(M_Z^2)\) will reduce from currently \(10\times 10^{-5}\) down to \(4.7\times 10^{-5}\). The improvement is expected due to updated \(e^+e^-\rightarrow \mathrm{hadrons}\) cross section measurements below the charm threshold from the completion of ongoing BABAR and VEPP-2000 analyses, improved charmonium resonance data from BES-III and a better knowledge of \(\alpha _{\scriptscriptstyle S}\) from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the ambiguity in \(m_t\) discussed above, the presently most important theoretical uncertainties affecting the fit are those related to the predictions of \(M_W\) and \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\). For the future scenarios, we assume that the present uncertainties of \(\delta _\mathrm{theo}M_W=4~\mathrm {MeV}\) and \(\delta _\mathrm{theo}\sin \!^2\theta ^{f}_{\mathrm{eff}}=4.7\times 10^{-5}\) reduce to \(1\) MeV and \(10^{-5}\), respectively. This reduction will require ambitious three-loop electroweak calculations. The leading theoretical uncertainties on the partial \(Z\) decay widths, \(\sigma ^0_\mathrm{had}\), and the radiator functions play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in Table 1 are assumed to be reduced by a factor of 4, similar to the uncertainties on \(M_W\) and \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\).

### 3.2 Expected fit performance

The numerical 1\(\sigma \) uncertainties of the indirect observable determinations are given for the present fit as well as the LHC and ILC/GigaZ scenarios in the right-hand columns of Table 3. Experimental and theoretical uncertainties are quoted separately.

Examples of \(\Delta \chi ^2\) profiles for three key observables are shown in Fig. 5. Throughout this section, blue, green and orange curves indicate the present, future LHC and future ILC/GigaZ scenarios. The impact of the theoretical uncertainties is illustrated by the width of each coloured curve. The light blue curve in the top panel in Fig. 5 indicates the \(M_H\) constraint using the present precision, but with the central experimental values adjusted to the future scenarios. It allows a direct comparison with the present uncertainties, which depend on the value of \(M_H\).

^{8}

Correspondingly, the prediction of \(M_W\) from the fit (see middle panel of Fig. 5) can be improved by the LHC (reduced uncertainty from currently \(7.8\) to \(5.5\) MeV, owing also to the reduced theoretical uncertainties) and by the ILC/GigaZ (\(2.3\) MeV). Also shown on the figure are the current and expected future direct measurements, keeping the central value unchanged. A powerful SM test is obtained, confronting measurement and prediction of \(M_W\) at the level of 0.05 per mill.

The prediction of \(\sin \!^2\theta ^{\ell }_{\mathrm{eff}}\) from the fit (bottom panel of Fig. 5) is significantly improved in the LHC and ILC/GigaZ scenarios, also owing to the improved theoretical precision. The total uncertainty reduces from currently \(6.6 \times 10^{-5}\) by almost a factor of 3 at the ILC/GigaZ. Again the current and expected future direct measurements are also indicated on the figure, keeping the central value unchanged. No improvement in the precision of the direct measurement is expected from the LHC, leaving the direct measurement a factor 5 less precise than the indirect determination. Only within the ILC/GigaZ scenario a similar precision between the prediction and direct measurement can be achieved.

### 3.3 Impact of the individual uncertainties

Contributions from the individual experimental and theoretical uncertainty sources to the total uncertainty in the indirect determination of a given observable by the electroweak fit for the three scenarios (present, future LHC, ILC/GigaZ). The uncertainty due to \(M_H\) is negligible compared to the other observables and is not shown. See text for further discussion

Parameter | \(\delta _\mathrm{meas}\) | \(\delta _\mathrm{fit}^\mathrm{tot}\) | \(\delta _\mathrm{fit}^\mathrm{theo}\) | \(\delta _\mathrm{fit}^\mathrm{exp}\) | Experimental uncertainty source [\({\pm }1\sigma \)] | |||||
---|---|---|---|---|---|---|---|---|---|---|

\(\delta M_W\) | \(\delta M_Z\) | \(\delta m_t\) | \( \delta \sin \!^2\theta ^{f}_{\mathrm{eff}}\) | \(\delta \Delta \alpha _\mathrm{had}\) | \(\delta \alpha _{\scriptscriptstyle S}\) | |||||

| ||||||||||

\( M_{H}\) [GeV] | \(0.2\) | \(_{-27}^{+33}\) | \(_{-8}^{+10}\) | \(_{-26}^{+31}\) | \(_{-23}^{+28}\) | \(_{-4}^{+5}\) | \(_{-7}^{+10}\) | \(_{-23}^{+29}\) | \(_{-5}^{+7}\) | \(_{-3}^{+4}\) |

\( M_{W}\) [MeV] | 15 | \( 7.8\) | \( 5.0\) | \( 6.0\) | – | \( 2.5\) | \( 4.3\) | \( 5.1\) | \( 1.6\) | \( 2.5\) |

\( M_{Z}\) [MeV] | 2.1 | \( 12.0\) | \( 3.7\) | \( 11.4\) | \( 10.5\) | – | \( 3.5\) | \( 11.2\) | \( 2.2\) | \( 1.4\) |

\( m_{t}\) [GeV] | 0.8 | \( 2.5\) | \( 0.6\) | \( 2.4\) | \( 2.3\) | \( 0.4\) | – | \( 2.3\) | \( 0.5\) | \( 0.6\) |

\( \sin \!^2\theta ^{\ell }_{\mathrm{eff}}\)\(^\mathrm{a}\) | 16 | \( 6.6\) | \( 4.9\) | \( 4.5\) | \( 3.7\) | \( 1.2\) | \( 2.0\) | – | \( 3.4\) | \( 1.2\) |

\( \Delta \alpha _\mathrm{had}\)\(^\mathrm{a}\) | 10 | \( 44\) | \( 13\) | \( 42\) | \( 31\) | \( 6\) | \( 10\) | \( 41\) | – | \( 2\) |

| ||||||||||

\( M_{H}\) [GeV] | \(<0.1\) | \(_{-18}^{+21}\) | \(_{-3}^{+4}\) | \(_{-18}^{+20}\) | \(_{-14}^{+17}\) | \(_{-5}^{+6}\) | \(_{-7}^{+8}\) | \(_{-16}^{+18}\) | \(_{-2}^{+3}\) | \(_{-4}^{+5}\) |

\( M_{W}\) [MeV] | 8 | \( 5.5\) | \( 1.8\) | \( 5.2\) | – | \( 2.5\) | \( 3.5\) | \( 4.8\) | \( 0.8\) | \( 2.6\) |

\( M_{Z}\) [MeV] | 2.1 | \( 7.2\) | \( 1.4\) | \( 7.0\) | \( 6.0\) | – | \( 2.8\) | \( 5.9\) | \( 0.8\) | \( 1.9\) |

\( m_{t}\) [GeV] | 0.6 | \( 1.5\) | \( 0.2\) | \( 1.5\) | \( 1.3\) | \( 0.4\) | – | \( 1.2\) | \( 0.2\) | \( 0.5\) |

\( \sin \!^2\theta ^{\ell }_{\mathrm{eff}}\)\(^\mathrm{a}\) | 16 | \( 3.0\) | \( 1.1\) | \( 2.8\) | \( 2.5\) | \( 1.1\) | \( 1.4\) | – | \( 1.5\) | \( 0.9\) |

\( \Delta \alpha _\mathrm{had}\)\(^\mathrm{a}\) | 4.7 | \( 36\) | \( 6\) | \( 36\) | \( 25\) | \( 9\) | \( 12\) | \( 35\) | – | \( 5\) |

| ||||||||||

\( M_{H}\) [GeV] | \(<0.1\) | \(_{-6.9}^{+7.3}\) | \(_{-2.4}^{+2.5}\) | \(_{-6.5}^{+6.8}\) | \(_{-3.6}^{+2.5}\) | \(_{-4.0}^{+4.3}\) | \(_{-0.2}^{+0.3}\) | \(_{-2.9}^{+3.4}\) | \(_{-4.0}^{+4.3}\) | \(_{-0.3}^{+0.3}\) |

\( M_{W}\) [MeV] | 5 | \( 2.3\) | \( 1.3\) | \( 1.9\) | – | \( 1.7\) | \( 0.1\) | \( 1.2\) | \( 0.6\) | \( 0.3\) |

\( M_{Z}\) [MeV] | 2.1 | \( 2.7\) | \( 1.0\) | \( 2.5\) | \( 2.4\) | – | \( 0.1\) | \( 1.3\) | \( 1.9\) | \( 0.2\) |

\( m_{t}\) [GeV] | 0.1 | \( 0.8\) | \( 0.2\) | \( 0.7\) | \( 0.6\) | \( 0.5\) | – | \( 0.3\) | \( 0.4\) | \( 0.2\) |

\( \sin \!^2\theta ^{\ell }_{\mathrm{eff}}\)\(^\mathrm{a}\) | 1.3 | \( 2.3\) | \( 1.0\) | \( 2.0\) | \( 1.7\) | \( 1.2\) | \( 0.1\) | – | \( 1.5\) | 0.1 |

\( \Delta \alpha _\mathrm{had}\)\(^\mathrm{a}\) | 4.7 | \( 6.4\) | \( 3.0\) | \( 5.6\) | \( 2.6\) | \( 4.2\) | \( 0.2\) | \( 3.8\) | – | \( 0.2\) |

One notices that the dominant uncertainty contributions vary between the three scenarios. For \(M_H\), the precision on the indirect determination is presently dominated by the uncertainty on the measurements of \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\) and \(M_W\), which does not change for the LHC scenario. For the ILC/GigaZ, however, the uncertainties on \(M_Z\) and \(\Delta \alpha _\mathrm{had}^{(5)}(M_Z^2)\) become equally important and a total precision of less than \(10\) GeV can be achieved. For \(M_W\), improvements in the theoretical uncertainty and on \(\delta m_t\) could lead to a precision of \(5.5\) MeV for the LHC scenario and of \(2.3\) MeV for the ILC/GigaZ. This would exceed the present experimental precision by \(60\) to \(75~\%\), respectively. For \(\sin \!^2\theta ^{\ell }_{\mathrm{eff}}\), improvements in the theoretical uncertainty and in \(\Delta \alpha _\mathrm{had}^{(5)}(M_Z^2)\) and \(m_t\) are expected, and they could lead to a precision on \(\sin \!^2\theta ^{\ell }_{\mathrm{eff}}\) of \(3.0 \times 10^{-5}\) for the future LHC scenario, which would exceed the present experimental precision by more than a factor of 5. The ILC/GigaZ would rectify the imbalance in precision: a precision of \(1.3 \times 10^{-5}\) for the direct measurement would confront an indirect determination with \(2.3 \times 10^{-5}\) total uncertainty.

At the ILC/GigaZ a comparable precision between direct determination and fit constraint would be reached for \(M_Z\) and \(\Delta \alpha _\mathrm{had}^{(5)}(M_Z^2)\), owing to the improved precision on \(M_W\) and \(\sin \!^2\theta ^{f}_{\mathrm{eff}}\). Also, an indirect constraint on \(m_t\) of 1 GeV would be possible.

Independently from the other improvements, the determination of \(\alpha _{\scriptscriptstyle S}(M_Z^2)\) from \(R_\ell ^0\) would also greatly benefit from the ILC/GigaZ. The current \(\alpha _{\scriptscriptstyle S}(M_Z^2)\) precision of \(30\times 10^{-4}\) is dominated by experimental uncertainties and could be improved to \(9\times 10^{-4}\). It would be the most precise experimental determination of the strong coupling constant, only challenged by calculations from Lattice QCD.

### 3.4 Prospects for the oblique parameter determination

Compared to the present scenario only a minor improvement is expected for the LHC scenario. A reduction of the uncertainty by a factor of 3 to 4 is, however, expected for the ILC/GigaZ. The numerical values of the uncertainties on \(S\) and \(T\) are given in Table 3. The parameters \(S\) and \(T\) are strongly correlated, with correlation coefficients of \(0.93\), \(0.96\) and \(0.91\) for the present, LHC and ILC/GigaZ scenarios.

Additional variables like the total width of the \(Z\), \(\Gamma _Z\), which could be measured to an accuracy of \(0.8\) MeV at the ILC/GigaZ [11], improve the precision on \(\delta S\) and \(\delta T\) by about 10 %.

## 4 Status and prospects for the Higgs couplings determination

To test the validity of the SM and look for signs of new physics, precision measurements of the properties of the Higgs boson are of critical importance. Key are the couplings to the SM fermions and bosons, which are predicted to depend linearly on the fermion mass and quadratically on the boson mass.

Modified Higgs couplings have been probed by ATLAS and CMS in various benchmark models [57, 58, 59, 60, 61, 62, 63, 64]. These employ an effective theory approach, where higher-order modifiers to a phenomenological Lagrangian are matched at tree-level to the SM Higgs boson couplings. In one popular model all boson and all fermion couplings are modified in the same way, scaled by the constants \(\kappa _V\) and \(\kappa _F\), respectively, where \(\kappa _V=\kappa _F=1\) for the SM. This benchmark model uses the explicit assumption that no other new physics is present, e.g., there are no additional loops in the production or decay of the Higgs boson and no invisible Higgs decays and undetectable contributions to its decay width. For details see Ref. [65].

The bottom panel of Fig. 8 shows \(\kappa _V\) and \(\kappa _F\) as obtained from a private combination of ATLAS and CMS results using all publicly available information on the measured Higgs signal-strength modifiers \(\mu _i\). Also shown is the combined constraint on \(\kappa _V\) (and \(\kappa _F\)) from the LHC experiments and the electroweak fit.

The ATLAS and CMS Higgs coupling measurements of \(\mu _\mathrm{ggF+ttH}\) and \(\mu _\mathrm{VBF+VH}\) and their correlations, as used in this study. Unless where available, the central values, uncertainties and correlations have been estimated from published or public likelihood iso-contour lines

Experiment | Channel | \(\mu _\mathrm{ggF+ttH}\) | \(\mu _\mathrm{VBF+VH}\) | Correlation | Refs. |
---|---|---|---|---|---|

ATLAS | \(H\rightarrow \gamma \gamma ,WW^{\star },ZZ^\star \) | Published 2D-likelihood scan | [57] | ||

\(H\rightarrow \gamma \gamma \) | \(1.13^{+0.37}_{-0.31}\) | \(1.15^{+0.63}_{-0.58}\) | \(-0.45\) | [72] | |

\(H\rightarrow WW^{\star }\) | \(0.70^{+0.25}_{-0.20}\) | \(0.70^{+0.65}_{-0.50}\) | \(-0.26\) | [61] | |

CMS | \(H\rightarrow ZZ^\star \) | \(0.80^{+0.46}_{-0.36}\) | \(1.70^{+2.20}_{-2.10}\) | \(-0.75\) | [62] |

\(H\rightarrow \tau \tau \) | \(0.50^{+0.53}_{-0.53}\) | \(1.30^{+0.46}_{-0.40}\) | \(-0.40\) | [63] | |

\(H\rightarrow bb\) | – | \(1.00^{+0.50}_{-0.50}\) | – | [64] |

The electroweak fit results in \(\kappa _V=1.037^{+0.029}_{-0.026}\), \(1.027^{+0.020}_{-0.019}\) and \(1.021^{+0.015}_{-0.014}\), for cut-off parameters \(\lambda = 1\), 3 and 10 TeV, respectively, where \(\lambda \) has been fixed during each of the fits. Including constraints from electroweak precision observables, the constraint on \(\kappa _V\) can be improved by a factor of more than 3. There is a mild dependence—both in the central value and uncertainty—on the chosen value for \(\lambda \), but all values result in small but positive deviations from unity. For \(\kappa _V\sim 1.03\) and \(\lambda = 4\pi v\), the new physics scale is \(\Lambda \gtrsim 13\) TeV.

Figure 9 (bottom) shows the prospects for predicting and measuring \(\kappa _V\) versus \(M_W\) at the LHC and ILC/GigaZ. For LHC, the predicted precision on \(\kappa _V\) is largely limited by theoretical uncertainties somewhat optimistically set to \(3~\%\) [73, 74]. For the ILC, the predicted uncertainties on the measurements of the Higgs to \(W\) and \(Z\) gauge boson coupling constants are both \(1~\%\) [75]. Assuming custodial symmetry, these uncertainties have been averaged in the figure. For the indirect LHC and ILC predictions, the central values of the electroweak observables have been shifted to match the Higgs mass of \(125\) GeV, with \(\kappa _{V} = 1\). The nominal value of \(\lambda \) is \(3\) TeV. Varying \(\lambda \) between \(1\), 3 and 10 TeV, the central value of \(\kappa _{V}\) remains unchanged at \(1\), but its uncertainty varies between \(0.008\) and \(0.015\) at the LHC and between \(0.003\) and \(0.005\) for the ILC scenario. The numbers obtained for \(\lambda = 3\) TeV are summarised in Table 3. Assuming the present central values of \(\kappa _V\) and \(M_W\), the deviation of \(\kappa _V\) from 1 would become significant.

## 5 Conclusion

We have updated in this paper the results from the global electroweak fit using full fermionic two-loop calculations for the partial widths and branching ratios of the \(Z\) boson [10] and including a detailed assessment of the impact of theoretical uncertainties. The prospects of the fit in view of future colliders, namely the Phase-1 LHC and the ILC with GigaZ mode, were also studied. A significant increase in the predictive power of the fit was found in both scenarios, where in particular the ILC/GigaZ provides excellent sensitivity to indirect new physics. We have also carried out an analysis of the Higgs coupling data in a benchmark model with modified effective SM Higgs couplings to fermions and bosons parametrised by one parameter each. The inclusion of electroweak precision observables yields constraints on the bosonic coupling \(\kappa _V\) that are about twice stronger than current Higgs coupling data alone, while the precision on the fermionic coupling \(\kappa _F\) is not improved.

## Footnotes

- 1.
The decay width of the \(W\) boson, \(\Gamma _W\), is only known to one-loop precision. However, this measurement being of insufficient precision has a negligible impact on the result of the electroweak fit.

- 2.
This corresponds to a scenario with \(\int L\mathrm{d}t=300~\mathrm{fb}^{-1}\) at \(\sqrt{s}=14\) TeV, before the high luminosity upgrade.

- 3.
GigaZ: the operation of the ILC at lower energies like the \(Z\) pole or the \(WW\) threshold allows for high-statistics precision measurements of several electroweak observables. At the \(Z\) pole the physics at LEP and SLC can be revisited with the data collected during a few days. Several billion \(Z\) bosons can be produced within a few months [11]. In comparison: in the seven years that LEP operated at the \(Z\) peak it produced around 17 million \(Z\) bosons in its four interaction points; SLD studied about 600 thousand \(Z\) bosons produced with a polarised beam [12].

- 4.
These calculations do not include diagrams with closed boson loops at two-loop order. These are expected to give small corrections compared to diagrams with closed fermion loops and are therefore only considered in the estimate of the theoretical uncertainty.

- 5.
- 6.
The following central values are used for the future scenarios: \(M_H = 125.0\) GeV, \(\Delta \alpha _\mathrm{had}^{(5)}(M_Z^2)= 2755.4 \times 10^{-5}\), \(M_Z = 91.1879\) GeV, \(m_t = 173.81\) GeV, \(M_W = 80.363\) GeV, \(\sin \!^2\theta ^{\ell }_{\mathrm{eff}}= 0.231492\) and \(R^0_\ell = 20.743\). See Table 3 for the corresponding uncertainties.

- 7.
An improvement in the \(M_Z\) precision from currently 2.1 to 1.6 MeV is suggested in [11]. Such a measurement would require the knowledge of the absolute ILC beam energy with a precision of \(10^{-5}\). Since the technical feasibility of such a precision is still uncertain, we do not yet include it in the fit.

- 8.
If the experimental input data, currently predicting \(M_H=94^{\,+25}_{\,-22}~\mathrm {GeV}\), are left unchanged with respect to the present central values but had uncertainties according to the future expectations, a precision of \(^{+16}_{-14}~\mathrm {GeV}\) and \(^{+5.6}_{-5.3}\) GeV is obtained for LHC and ILC/GigaZ, respectively. A deviation of the measured \(M_H\) at a level of \(5\sigma \) could be established with the ILC/GigaZ fit.

## Notes

### Acknowledgments

We thank Ayres Freitas for intensive discussions, help concerning the electroweak calculations and a careful reading of this manuscript. This work is supported by the German Research Foundation (DFG) in the Collaborative Research Centre (SFB) 676 “Particles, Strings and the Early Universe” located in Hamburg.

### References

- 1.ALEPH, DELPHI, L3, OPAL, LEP Electroweak, S. Schael et al., Phys. Rep.
**532**, 119 (2013). 1302.3415 - 2.J. Erler, Phys. Rev. D
**81**, 051301 (2010). 1002.1320 - 3.
- 4.M. Baak et al., Eur. Phys. J. C
**72**, 2003 (2012). 1107.0975 - 5.M. Ciuchini, E. Franco, S. Mishima, L. Silvestrini, JHEP
**1308**, 106 (2013). 1306.4644 - 6.ATLAS Collaboration, Phys. Lett. B (2012). 1207.7214
- 7.CMS Collaboration, Phys. Lett. B (2012). 1207.7235
- 8.M. Baak et al., Eur. Phys. J. C
**72**, 2205 (2012). 1209.2716 - 9.O. Eberhardt et al., Phys. Rev. Lett.
**109**, 241802 (2012). 1209.1101 - 10.A. Freitas, JHEP
**1404**, 070 (2014). 1401.2447 - 11.H. Baer et al., 1306.6352
- 12.The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Working Groups, Phys. Rep.
**427**, 257 (2006). hep-ex/0509008 - 13.M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett.
**93**, 201805 (2004). hep-ph/0407317 - 14.M. Awramik, M. Czakon, A. Freitas, JHEP
**0611**, 048 (2006). hep-ph/0608099 - 15.L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, Phys. Lett. B
**336**, 560 (1994). hep-ph/9406363 [Erratum-ibid. B**349**, 597 (1994)] - 16.K. Chetyrkin, J.H. Kühn, M. Steinhauser, Phys. Lett. B
**351**, 331 (1995). hep-ph/9502291 - 17.K. Chetyrkin, J.H. Kühn, M. Steinhauser, Phys. Rev. Lett.
**75**, 3394 (1995). hep-ph/9504413 - 18.J. van der Bij, K. Chetyrkin, M. Faisst, G. Jikia, T. Seidensticker, Phys. Lett. B
**498**, 156 (2001). hep-ph/0011373 - 19.M. Faisst, J.H. Kühn, T. Seidensticker, O. Veretin, Nucl. Phys. B
**665**, 649 (2003). hep-ph/0302275 - 20.Y. Schröder, M. Steinhauser, Phys. Lett. B
**622**, 124 (2005). hep-ph/0504055 - 21.K.G. Chetyrkin, M. Faisst, J.H. Kühn, P. Maierhofer, C. Sturm, Phys. Rev. Lett.
**97**, 102003 (2006). hep-ph/0605201 - 22.R. Boughezal, M. Czakon, Nucl. Phys. B
**755**, 221 (2006). hep-ph/0606232 - 23.M. Awramik, M. Czakon, A. Freitas, B. Kniehl, Nucl. Phys. B
**813**, 174 (2009). 0811.1364 - 24.M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D
**69**, 053006 (2004). hep-ph/0311148 - 25.A. Freitas, Phys. Lett. B
**730**, 50 (2014). 1310.2256 - 26.A. Freitas, Y.-C. Huang, JHEP
**1208**, 050 (2012). 1205.0299 [Erratum-ibid.**1305**, 074 (2013), Erratum-ibid.**1310**, 044 (2013)] - 27.K. Chetyrkin, J.H. Kuhn, A. Kwiatkowski, Phys. Rep.
**277**, 189 (1996)ADSCrossRefGoogle Scholar - 28.P. Baikov, K. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett.
**101**, 012002 (2008). 0801.1821 - 29.P. Baikov, K. Chetyrkin, J. Kuhn, J. Rittinger, Phys. Rev. Lett.
**108**, 222003 (2012). 1201.5804 - 30.A. Kataev, Phys. Lett. B
**287**, 209 (1992)ADSCrossRefGoogle Scholar - 31.A. Czarnecki, J.H. Kühn, Phys. Rev. Lett.
**77**, 3955 (1996). hep-ph/9608366 - 32.R. Harlander, T. Seidensticker, M. Steinhauser, Phys. Lett. B
**426**, 125 (1998). hep-ph/9712228 - 33.G.-C. Cho, K. Hagiwara, Y. Matsumoto, D. Nomura, JHEP
**1111**, 068 (2011). 1104.1769 - 34.A.H. Hoang, A. Jain, I. Scimemi, I.W. Stewart, Phys. Rev. Lett.
**101**, 151602 (2008). 0803.4214 - 35.A.H. Hoang, I.W. Stewart, Nucl. Phys. Proc. Suppl.
**185**, 220 (2008). 0808.0222 - 36.A. Buckley et al., Phys. Rep.
**504**, 145 (2011). 1101.2599 - 37.S. Moch et al., 1405.4781
- 38.P. Skands, D. Wicke, Eur. Phys. J. C
**52**, 133 (2007). hep-ph/0703081 - 39.D. Wicke, P.Z. Skands, Nuovo Cim. B
**123**, S1 (2008). hep-ph/0807.3248 - 40.K. Chetyrkin, M. Steinhauser, Nucl. Phys. B
**573**, 617 (2000). hep-ph/9911434 - 41.K. Melnikov, T.v. Ritbergen, Phys. Lett. B
**482**, 99 (2000). hep-ph/9912391 - 42.M. Mangano, Private communication, Jun 2014. See also presentation at TOP2012 Interpreting the top quark mass: theoretical and MC aspects, Nov 2012 Google Scholar
- 43.CMS Collaboration, CMS-PAS-TOP-12-029 (2012)Google Scholar
- 44.A. Hoang et al., Eur. Phys. J. Direct C
**2**, 1 (2000). hep-ph/0001286 - 45.Particle Data Group, J. Beringer et al., Phys. Rev. D
**86**, 010001 (2012)Google Scholar - 46.M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C
**71**, 1515 (2011). 1010.4180 - 47.ATLAS Collaboration, CDF Collaboration, CMS Collaboration, D0 Collaboration. 1403.4427
- 48.ATLAS Collaboration, 1406.3827
- 49.CMS Collaboration, CMS-PAS-HIG-14-009 (2014)Google Scholar
- 50.M.E. Peskin, T. Takeuchi, Phys. Rev. Lett.
**65**, 964 (1990)ADSCrossRefGoogle Scholar - 51.M.E. Peskin, T. Takeuchi, Phys. Rev. D
**46**, 381 (1992)ADSCrossRefGoogle Scholar - 52.G. Altarelli, R. Barbieri, Phys. Lett. B
**253**, 161 (1991)ADSCrossRefGoogle Scholar - 53.G. Altarelli, R. Barbieri, S. Jadach, Nucl. Phys. B
**369**, 3 (1992) [Erratum-ibid. B**376**, 444 (1992)]Google Scholar - 54.G. Bozzi, J. Rojo, A. Vicini, Phys. Rev. D
**83**, 113008 (2011). 1104.2056 - 55.R. Hawkings, K. Mönig, Eur. Phys. J. Direct C
**1**, 8 (1999). hep-ex/9910022 - 56.M. Davier, Private communication, Nov 2012Google Scholar
- 57.ATLAS Collaboration, Phys. Lett. B (2013). 1307.1427
- 58.ATLAS Collaboration, ATLAS-CONF-2013-108 (2013)Google Scholar
- 59.ATLAS Collaboration, ATLAS-CONF-2013-079 (2013)Google Scholar
- 60.CMS Collaboration, CMS-PAS-HIG-13-005 (2013)Google Scholar
- 61.CMS Collaboration, JHEP
**1401**, 096 (2014). 1312.1129 - 62.CMS Collaboration, Phys. Rev. D
**89**, 092007 (2014). 1312.5353 - 63.CMS Collaboration, JHEP
**1405**, 104 (2014). 1401.5041 - 64.CMS Collaboration, Phys. Rev. D
**89**, 012003 (2014). 1310.3687 - 65.LHC Higgs Cross Section Working Group, A. David et al., 1209.0040
- 66.J. Espinosa, C. Grojean, M. Muhlleitner, M. Trott, JHEP
**1212**, 045 (2012). 1207.1717 - 67.M. Farina, C. Grojean, E. Salvioni, JHEP
**1207**, 012 (2012). 1205.0011 - 68.B. Batell, S. Gori, L.-T. Wang, JHEP
**1301**, 139 (2013). 1209.6382 - 69.T. Corbett, O. Eboli, J. Gonzalez-Fraile, M. Gonzalez-Garcia, Phys. Rev. D
**87**, 015022 (2013). 1211.4580 - 70.A. Falkowski, F. Riva, A. Urbano, JHEP
**1311**, 111 (2013). 1303.1812 - 71.B. Dumont, S. Fichet, G. von Gersdorff, JHEP
**1307**, 065 (2013). 1304.3369 - 72.CMS Collaboration, 1407.0558
- 73.ATLAS Collaboration, ATL-PHYS-PUB-2013-007 (2013)Google Scholar
- 74.CMS Collaboration, CMS-NOTE-2012-006 (2012)Google Scholar
- 75.M.E. Peskin, 1207.2516

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP^{3} / License Version CC BY 4.0.