Advertisement

Dispersive analysis for ηγγ

  • C. Hanhart
  • A. Kupść
  • U.-G. Meißner
  • F. Stollenwerk
  • A. WirzbaEmail author
Regular Article - Theoretical Physics

Abstract

A dispersion integral is derived that connects data on ηπ + π γ to the ηγγ transition form factor. A detailed analysis of the uncertainties is provided. We find for the slope of the η transition form factor at the origin \(b_{\eta}= (2.05 \ \mbox{}^{+0.22}_{-0.10} )~\mathrm{GeV}^{-2}\). Using an additional, plausible assumption, one finds for the corresponding slope of the η′ transition form factor, \(b_{\eta'} = (1.53\ \mbox{}^{+0.15}_{-0.08} )~\mathrm{GeV}^{-2}\). Both values are consistent with all recent data, but differ from some previous theoretical analyses.

Keywords

Form Factor Slope Parameter Chiral Perturbation Theory Transition Form Factor Partial Decay Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Martin Hoferichter, Bastian Kubis, Franz Niecknig, Stefan Leupold and Simon Eidelman for helpful discussions and advice. We are grateful to Camilla Di Donato for providing the KLOE data and to Marc Unverzagt for help in connection with Fig. 3. This work is supported in part by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD”, and by the European Community-Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter” (shortly HadronPhysics3).

References

  1. 1.
    E. Czerwinski, S. Eidelman, C. Hanhart, B. Kubis, A. Kupść, S. Leupold, P. Moskal, S. Schadmand, arXiv:1207.6556 [hep-ph]
  2. 2.
    H. Czyż et al., arXiv:1306.2045 [hep-ph]
  3. 3.
    F. Stollenwerk, C. Hanhart, A. Kupść, U.-G. Meißner, A. Wirzba, Phys. Lett. B 707, 184 (2012). arXiv:1108.2419 [nucl-th] CrossRefADSGoogle Scholar
  4. 4.
    J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition CrossRefADSGoogle Scholar
  5. 5.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Lett. B 707, 243 (2012). arXiv:1107.5277 [nucl-ex] CrossRefADSGoogle Scholar
  6. 6.
    A. Abele et al. (Crystal Barrel Collaboration), Phys. Lett. B 402, 195 (1997) CrossRefADSGoogle Scholar
  7. 7.
    D. Babusci et al. (KLOE/KLOE-2 Collaboration), Phys. Lett. B 718, 910 (2013). arXiv:1209.4611 [hep-ex] CrossRefADSGoogle Scholar
  8. 8.
    R. Garcia-Martin et al., Phys. Rev. D 83, 074004 (2011). arXiv:1102.2183 [hep-ph] CrossRefADSGoogle Scholar
  9. 9.
    M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008). arXiv:0805.3773 [hep-ex] CrossRefADSGoogle Scholar
  10. 10.
    C. Hanhart, Phys. Lett. B 715, 170 (2012). arXiv:1203.6839 [hep-ph] CrossRefADSGoogle Scholar
  11. 11.
    V. Bernard, N. Kaiser, U.-G. Meißner, Phys. Rev. D 44, 3698 (1991) CrossRefADSGoogle Scholar
  12. 12.
    B. Kubis, S.P. Schneider, Eur. Phys. J. C 62, 511 (2009) CrossRefADSGoogle Scholar
  13. 13.
    D.M. Asner et al., Int. J. Mod. Phys. A 24, S1 (2009). arXiv:0809.1869 [hep-ex] CrossRefGoogle Scholar
  14. 14.
    P. Adlarson, M. Amaryan, M. Bashkanov, F. Bergmann, M. Berlowski, J. Bijnens, L.C. Balkestahl, D. Coderre et al., arXiv:1204.5509 [nucl-ex]
  15. 15.
    F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011) CrossRefADSGoogle Scholar
  16. 16.
    L.G. Landsberg, Phys. Rep. 128, 301 (1985) CrossRefADSGoogle Scholar
  17. 17.
    J. Bijnens, A. Bramon, F. Cornet, Phys. Lett. B 237, 488 (1990) CrossRefADSGoogle Scholar
  18. 18.
    B.R. Holstein, Phys. Scr. T 99, 55 (2002) CrossRefADSGoogle Scholar
  19. 19.
    M. Benayoun, P. David, L. DelBuono, O. Leitner, H.B. O’Connell, Eur. Phys. J. C 55, 199 (2008). arXiv:0711.4482 [hep-ph] CrossRefADSGoogle Scholar
  20. 20.
    M. Benayoun, P. David, L. DelBuono, O. Leitner, Eur. Phys. J. C 65, 211 (2010). arXiv:0907.4047 [hep-ph] CrossRefADSGoogle Scholar
  21. 21.
    M. Benayoun, L. DelBuono, H.B. O’Connell, Eur. Phys. J. C 17, 593 (2000). arXiv:hep-ph/9905350 CrossRefADSGoogle Scholar
  22. 22.
    M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Eur. Phys. J. C 72, 1848 (2012). arXiv:1106.1315 [hep-ph] CrossRefADSGoogle Scholar
  23. 23.
    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 605, 26 (2005). hep-ex/0409030 CrossRefADSGoogle Scholar
  24. 24.
    M.N. Achasov, K.I. Beloborodov, A.V. Berdyugin, A.G. Bogdanchikov, A.D. Bukin, D.A. Bukin, T.V. Dimova et al., Phys. Rev. D 76, 077101 (2007). arXiv:0709.1007 [hep-ex] CrossRefADSGoogle Scholar
  25. 25.
    M.N. Achasov, S.E. Baru, A.V. Bozhenok, A.D. Bukin, D.A. Bukin, S.V. Burdin, T.V. Dimova, S.I. Dolinsky et al., Eur. Phys. J. C 12, 369 (2000). hep-ex/9908068 CrossRefADSGoogle Scholar
  26. 26.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 1808 (1981) CrossRefADSGoogle Scholar
  27. 27.
    S.J. Brodsky, F.-G. Cao, G.F. de Teramond, Phys. Rev. D 84, 033001 (2011). arXiv:1104.3364 [hep-ph] CrossRefADSGoogle Scholar
  28. 28.
    J. Bijnens, F. Persson, arXiv:hep-ph/0106130
  29. 29.
    S.P. Schneider, B. Kubis, F. Niecknig, Phys. Rev. D 86, 054013 (2012). arXiv:1206.3098 [hep-ph] CrossRefADSGoogle Scholar
  30. 30.
    M. Hoferichter, B. Kubis, D. Sakkas, Phys. Rev. D 86, 116009 (2012). arXiv:1210.6793 [hep-ph] CrossRefADSGoogle Scholar
  31. 31.
    G. Usai (NA60 Collaboration), Nucl. Phys. A 855, 189 (2011) CrossRefADSGoogle Scholar
  32. 32.
    H. Berghauser, V. Metag, A. Starostin, P. Aguar-Bartolome, L.K. Akasoy, J.R.M. Annand, H.J. Arends, K. Bantawa et al., Phys. Lett. B 701, 562 (2011) CrossRefADSGoogle Scholar
  33. 33.
    R. Escribano, P. Masjuan, P. Sanchez-Puertas, arXiv:1307.2061v2 [hep-ph]
  34. 34.
    L. Ametller, J. Bijnens, A. Bramon, F. Cornet, Phys. Rev. D 45, 986 (1992) CrossRefADSGoogle Scholar
  35. 35.
    M.N. Achasov, V.M. Aulchenko, K.I. Beloborodov, A.V. Berdyugin, A.G. Bogdanchikov, A.V. Bozhenok, A.D. Bukin, D.A. Bukin et al., Phys. Lett. B 504, 275 (2001) CrossRefADSGoogle Scholar
  36. 36.
    H.J. Behrend et al. (CELLO Collaboration), Z. Phys. C 49, 401 (1991) Google Scholar
  37. 37.
    J. Gronberg et al. (CLEO Collaboration), Phys. Rev. D 57, 33 (1998). arXiv:hep-ex/9707031 CrossRefADSGoogle Scholar
  38. 38.
    P. del Amo Sanchez et al. (BaBar Collaboration), Phys. Rev. D 84, 052001 (2011). arXiv:1101.1142 [hep-ex] CrossRefADSGoogle Scholar
  39. 39.
    K. Kawarabayashi, M. Suzuki, Phys. Rev. Lett. 16, 255 (1966) CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Riazuddin, Fayyazuddin, Phys. Rev. 147, 1071 (1966) CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    U.-G. Meißner, Phys. Rep. 161, 213 (1988) CrossRefADSGoogle Scholar
  42. 42.
    C. Terschlüsen, S. Leupold, Phys. Lett. B 691, 191 (2010). arXiv:1003.1030 [hep-ph] CrossRefADSGoogle Scholar
  43. 43.
    C. Terschlüsen, S. Leupold, M.F.M. Lutz, arXiv:1204.4125v2 [hep-ph]

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • C. Hanhart
    • 1
    • 2
    • 3
  • A. Kupść
    • 4
    • 5
  • U.-G. Meißner
    • 1
    • 2
    • 3
    • 6
    • 7
  • F. Stollenwerk
    • 1
    • 8
  • A. Wirzba
    • 1
    • 2
    • 3
    Email author
  1. 1.Institut für Kernphysik (Theorie)Forschungszentrum JülichJülichGermany
  2. 2.Institute for Advanced SimulationForschungszentrum JülichJülichGermany
  3. 3.Jülich Center for Hadron PhysicsForschungszentrum JülichJülichGermany
  4. 4.Division of Nuclear Physics, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  5. 5.High Energy Physics DepartmentNational Centre for Nuclear ResearchWarsawPoland
  6. 6.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  7. 7.Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  8. 8.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations