Tackling light higgsinos at the ILC

  • Mikael Berggren
  • Felix Brümmer
  • Jenny List
  • Gudrid Moortgat-Pick
  • Tania Robens
  • Krzysztof Rolbiecki
  • Hale Sert
Regular Article - Theoretical Physics

Abstract

In supersymmetric extensions of the Standard Model, higgsino-like charginos and neutralinos are preferred to have masses of the order of the electroweak scale by naturalness arguments. Such light \(\widetilde{\chi}^{0}_{1}\), \(\widetilde{\chi}^{0}_{2}\) and \(\widetilde{\chi}^{\pm}_{1}\) states can be almost mass degenerate, and their decays are then difficult to observe at colliders. In addition to the generic naturalness argument, light higgsinos are well motivated from a top-down perspective. For instance, they arise naturally in certain models of hybrid gauge-gravity mediation. In the present analysis, we study two benchmark points which have been derived in the framework of such a model, which exhibit mass differences of \(\mathcal {O}(\mathrm {GeV})\) in the higgsino sector. For chargino-pair and neutralino associated production with initial-state photon radiation, we simulate the detector response and determine how accurately the small mass differences, the absolute masses and the cross sections can be measured at the International Linear Collider. Assuming that 500 fb−1 has been collected at each of two beam-polarisations P(e +,e )=(±30 %,∓80 %), we find that the mass differences can be measured to 40–300 MeV, the cross sections to 2–5 %, and the absolute masses to 1.5–3.3 GeV, where the range of values correspond to the different scenarios and channels. Based on these observables we perform a parameter fit in the MSSM, from which we infer that the higgsino mass parameter μ can be measured to a precision of about Δμ=2–7 GeV. For the electroweak gaugino mass parameters M 1, M 2, which are chosen in the multi-TeV range, a narrow region is compatible with the measurements. For both parameters independently, we can determine a lower bound.

Notes

Acknowledgements

We thank Frank Gäde for providing the tracking efficiency histograms in presence of pair background. We thank the ILC Generator Group for providing the SM Whizard samples. We thank Aoife Bharucha for discussions on loop corrections. We thankfully acknowledge the support by the DFG through the SFB 676 “Particles, Strings and the Early Universe”. This work has been partially supported by the MICINN, Spain, under contract FPA2010-17747; Consolider-Ingenio CPAN CSD2007-00042. We thank as well the Comunidad de Madrid through Proyecto HEPHACOS S2009/ESP-1473 and the European Commission under contract PITN-GA-2009-237920.

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 73, 2362 (2013). arXiv:1212.6149 [hep-ex] ADSCrossRefGoogle Scholar
  4. 4.
    ATLAS Collaboration, ATLAS-CONF-2013-054 Google Scholar
  5. 5.
    ATLAS Collaboration, ATLAS-CONF-2013-047 Google Scholar
  6. 6.
    ATLAS Collaboration, ATLAS-CONF-2013-037 Google Scholar
  7. 7.
    ATLAS Collaboration, ATLAS-CONF-2013-026 Google Scholar
  8. 8.
    ATLAS Collaboration, ATLAS-CONF-2013-024 Google Scholar
  9. 9.
    ATLAS Collaboration, ATLAS-CONF-2013-007 Google Scholar
  10. 10.
    ATLAS Collaboration, ATLAS-CONF-2012-144 Google Scholar
  11. 11.
    ATLAS Collaboration, ATLAS-CONF-2012-140 Google Scholar
  12. 12.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 87, 072001 (2013). arXiv:1301.0916 [hep-ex] ADSCrossRefGoogle Scholar
  13. 13.
    S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C 73, 2404 (2013). arXiv:1212.6428 [hep-ex] ADSCrossRefGoogle Scholar
  14. 14.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1303, 037 (2013). arXiv:1212.6194 [hep-ex] ADSCrossRefGoogle Scholar
  15. 15.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1303, 111 (2013). arXiv:1211.4784 [hep-ex] ADSCrossRefGoogle Scholar
  16. 16.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 725, 243 (2013). arXiv:1305.2390 [hep-ex] ADSCrossRefGoogle Scholar
  17. 17.
    S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C 73, 2568 (2013). arXiv:1303.2985 [hep-ex] ADSCrossRefGoogle Scholar
  18. 18.
    S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C 73, 2493 (2013). arXiv:1301.3792 [hep-ex] ADSCrossRefGoogle Scholar
  19. 19.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1301.2175 [hep-ex]
  20. 20.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 111, 081802 (2013). arXiv:1212.6961 [hep-ex] ADSCrossRefGoogle Scholar
  21. 21.
    CMS Collaboration, CMS-PAS-SUS-13-011 Google Scholar
  22. 22.
    CMS Collaboration, CMS-PAS-SUS-13-008 Google Scholar
  23. 23.
    CMS Collaboration, CMS-PAS-SUS-13-007 Google Scholar
  24. 24.
    ATLAS Collaboration, ATL-PHYS-PUB-2013-007 Google Scholar
  25. 25.
    CMS Collaboration, CMS-PAS-FTR-13-014 Google Scholar
  26. 26.
    ATLAS Collaboration, ATLAS-CONF-2013-028 Google Scholar
  27. 27.
    ATLAS Collaboration, ATLAS-CONF-2013-035 Google Scholar
  28. 28.
    ATLAS Collaboration, ATLAS-CONF-2013-049 Google Scholar
  29. 29.
    ATLAS Collaboration, ATLAS-CONF-2013-093 Google Scholar
  30. 30.
    CMS Collaboration, PAS-SUS-13-006 Google Scholar
  31. 31.
    CMS Collaboration, PAS-SUS-13-002 Google Scholar
  32. 32.
    CMS Collaboration, PAS-SUS-13-017 Google Scholar
  33. 33.
    J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 533, 223 (2002). hep-ex/0203020 ADSCrossRefGoogle Scholar
  35. 35.
    J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 31, 421 (2003). hep-ex/0311019 CrossRefGoogle Scholar
  36. 36.
    M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 482, 31 (2000). hep-ex/0002043 ADSCrossRefGoogle Scholar
  37. 37.
    G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 35, 1 (2004). hep-ex/0401026 ADSCrossRefGoogle Scholar
  38. 38.
    M. Papucci, J.T. Ruderman, A. Weiler, J. High Energy Phys. 1209, 035 (2012). arXiv:1110.6926 [hep-ph] ADSCrossRefGoogle Scholar
  39. 39.
    R. Allahverdi, B. Dutta, K. Sinha, Phys. Rev. D 86, 095016 (2012). arXiv:1208.0115 [hep-ph] ADSCrossRefGoogle Scholar
  40. 40.
    C.H. Chen, M. Drees, J.F. Gunion, Phys. Rev. Lett. 76, 2002 (1996). hep-ph/9512230. Addendum/erratum: hep-ph/9902309 ADSCrossRefGoogle Scholar
  41. 41.
    H. Baer, V. Barger, P. Huang, J. High Energy Phys. 1111, 031 (2011). arXiv:1107.5581 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    H. Baer, V. Barger, P. Huang, X. Tata, J. High Energy Phys. 1205, 109 (2012). arXiv:1203.5539 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    F. Brümmer, W. Buchmüller, J. High Energy Phys. 1107, 010 (2011). arXiv:1105.0802 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    F. Brümmer, W. Buchmüller, J. High Energy Phys. 1205, 006 (2012). arXiv:1201.4338 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    H.P. Nilles, S. Ramos-Sanchez, M. Ratz, P.K.S. Vaudrevange, Eur. Phys. J. C 59, 249 (2009). arXiv:0806.3905 [hep-th] ADSCrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    A. Maharana, E. Palti, Int. J. Mod. Phys. A 28, 1330005 (2013). arXiv:1212.0555 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  48. 48.
    A. Bartl, H. Fraas, W. Majerotto, N. Oshimo, Phys. Rev. D 40, 1594 (1989) ADSCrossRefGoogle Scholar
  49. 49.
    M.M. El Kheishen, A.A. Aboshousha, A.A. Shafik, Phys. Rev. D 45, 4345 (1992) ADSCrossRefGoogle Scholar
  50. 50.
    M. Guchait, Z. Phys. C 57, 157 (1993) [[Erratum: Z. Phys. C 61, 178 (1994)] ADSCrossRefGoogle Scholar
  51. 51.
    G.J. Gounaris, C. Le Mouel, P.I. Porfyriadis, Phys. Rev. D 65, 035002 (2002). hep-ph/0107249 ADSCrossRefGoogle Scholar
  52. 52.
    S.Y. Choi, J. Kalinowski, G.A. Moortgat-Pick, P.M. Zerwas, Eur. Phys. J. C 22, 563 (2001) [Addendum: Eur. Phys. J. C 23, 769 (2002)] hep-ph/0108117 ADSCrossRefGoogle Scholar
  53. 53.
    J.F. Gunion, H.E. Haber, Phys. Rev. D 37, 2515 (1988) ADSCrossRefGoogle Scholar
  54. 54.
    S. Ambrosanio, B. Mele, Phys. Rev. D 55, 1399 (1997) [Erratum: Phys. Rev. D 56, 3157 (1997)] hep-ph/9609212 ADSCrossRefGoogle Scholar
  55. 55.
    S.Y. Choi, M. Guchait, J. Kalinowski, P.M. Zerwas, Phys. Lett. B 479, 235 (2000). hep-ph/0001175 ADSCrossRefGoogle Scholar
  56. 56.
    A. Bharucha, A. Fowler, G. Moortgat-Pick, G. Weiglein, J. High Energy Phys. 1305, 053 (2013). arXiv:1211.3134 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    A. Bharucha, private communication Google Scholar
  58. 58.
    A. Bharucha, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki, G. Weiglein, Eur. Phys. J. C 73, 2446 (2013). arXiv:1211.3745 [hep-ph] ADSCrossRefGoogle Scholar
  59. 59.
    G.A. Moortgat-Pick, H. Fraas, Phys. Rev. D 59, 015016 (1999). hep-ph/9708481 ADSCrossRefGoogle Scholar
  60. 60.
    G.A. Moortgat-Pick, H. Fraas, A. Bartl, W. Majerotto, Eur. Phys. J. C 7, 113 (1999). hep-ph/9804306 ADSGoogle Scholar
  61. 61.
    G.A. Moortgat-Pick, H. Fraas, A. Bartl, W. Majerotto, Eur. Phys. J. C 9, 521 (1999) [Erratum: Eur. Phys. J. C 9, 549 (1999)] hep-ph/9903220 ADSCrossRefGoogle Scholar
  62. 62.
    H.E. Haber, D. Wyler, Nucl. Phys. B 323, 267 (1989) ADSCrossRefGoogle Scholar
  63. 63.
    M. Berggren, T. Han, J. List, S. Padhi, S. Su, T. Tanabe, Electroweakino searches: a comparative study for LHC and ILC (a snowmass white paper). arXiv:1309.7342 [hep-ph]
  64. 64.
    K. Yokoya, P. Chen, Lect. Notes Phys. 400, 415 (1992) ADSCrossRefGoogle Scholar
  65. 65.
    P. Chen, Phys. Rev. D 46, 1186 (1992) ADSCrossRefGoogle Scholar
  66. 66.
    B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). hep-ph/0104145 ADSCrossRefMATHGoogle Scholar
  67. 67.
    T. Fritzsche, W. Hollik, Eur. Phys. J. C 24, 619 (2002). hep-ph/0203159 CrossRefGoogle Scholar
  68. 68.
    T. Fritzsche, Berechnung von Observablen zur supersymmetrischen Teilchenerzeugung an Hochenergie-Collidern unter Einschluss hoeherer Ordnungen. PhD Thesis, Cuvillier Verlag, Göttingen, 2005. ISBN 3-86537-577-4 Google Scholar
  69. 69.
    D.M. Pierce, J.A. Bagger, K.T. Matchev, R.-J. Zhang, Nucl. Phys. B 491, 3 (1997). hep-ph/9606211 ADSCrossRefGoogle Scholar
  70. 70.
    W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011). arXiv:0708.4233 [hep-ph] ADSCrossRefGoogle Scholar
  71. 71.
    T. Behnke, J.E. Brau, P.N. Burrows, J. Fuster, M. Peskin, M. Stanitzki, Y. Sugimoto, S. Yamada et al., in The International Linear Collider Technical Design Report, Vol. 4: Detectors (2013), pp. 32–36. arXiv:1306.6329 [physics.ins-det] Google Scholar
  72. 72.
    M. Skrzypek, S. Jadach, Z. Phys. C 49, 577 (1991) CrossRefGoogle Scholar
  73. 73.
    C. Adolphsen, M. Barone, B. Barish, K. Büsser, P. Burrows, J. Carwardine, J. Clark, H.M. Durand et al., in The International Linear Collider Technical Design Report, Vol. 3.II: Accelerator Baseline Design (2013), pp. 8–10. arXiv:1306.6328 [physics.acc-ph] Google Scholar
  74. 74.
    C. Hensel, Search for nearly mass degenerate charginos and neutralinos in e + e collisions. DESY-THESIS-2002-047. http://www.library.desy.de/cgi-bin/showprep.pl?desy-thesis-02-047
  75. 75.
    T. Fritzsche, W. Hollik, Nucl. Phys. B, Proc. Suppl. 135, 102 (2004). hep-ph/0407095 ADSCrossRefGoogle Scholar
  76. 76.
    W. Oller, H. Eberl, W. Majerotto, Phys. Rev. D 71, 115002 (2005). hep-ph/0504109 ADSCrossRefGoogle Scholar
  77. 77.
    W. Kilian, J. Reuter, T. Robens, Eur. Phys. J. C 48, 389 (2006). hep-ph/0607127 ADSCrossRefGoogle Scholar
  78. 78.
    T. Robens, Event generation for next to leading order chargino production at the international linear collider. hep-ph/0610401
  79. 79.
    G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A.A. Babich, V. Bharadwaj, D. Barber, A. Bartl et al., Phys. Rep. 460, 131 (2008). hep-ph/0507011 ADSCrossRefGoogle Scholar
  80. 80.
    K. Desch, J. Kalinowski, G.A. Moortgat-Pick, M.M. Nojiri, G. Polesello, J. High Energy Phys. 0402, 035 (2004). hep-ph/0312069 ADSCrossRefGoogle Scholar
  81. 81.
    G. Moortgat-Pick, I. Fleck, S. Riemann, F. Simon, O.S. Adeyemi, G. Alexander, M.S. Amjad, V.V. Andreev et al., Helmholtz Aliance Linear Collider Forum: Proceedings of the Workshops Hamburg, Munich, Hamburg, Germany, 2010–2012, DESY 12-123H Google Scholar
  82. 82.
    D. Grellscheid, P. Richardson, arXiv:0710.1951 [hep-ph]
  83. 83.
    M. Bahr, S. Gieseke, M.A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Platzer, P. Richardson et al., Eur. Phys. J. C 58, 639 (2008). arXiv:0803.0883 [hep-ph] ADSCrossRefGoogle Scholar
  84. 84.
    T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006). hep-ph/0603175 ADSCrossRefGoogle Scholar
  85. 85.
    T. Behnke, J.E. Brau, P.N. Burrows, J. Fuster, M. Peskin, M. Stanitzki, Y. Sugimoto, S. Yamada et al., in The International Linear Collider Technical Design Report, Vol. 4: Detectors (2013), pp. 181–314. arXiv:1306.6329 [physics.ins-det] Google Scholar
  86. 86.
    C. Bartels, M. Berggren, J. List, Eur. Phys. J. C 72, 2213 (2012). arXiv:1206.6639 [hep-ex] ADSCrossRefGoogle Scholar
  87. 87.
    S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003) ADSCrossRefGoogle Scholar
  88. 88.
    T. Abe et al. (ILD Concept Group—Linear Collider Collaboration), The international large detector: letter of intent. arXiv:1006.3396 [hep-ex]
  89. 89.
    M. Berggren, SGV 3.0—a fast detector simulation. arXiv:1203.0217 [physics.ins-det]
  90. 90.
    D. Schulte, Study of electromagnetic and hadronic background in the interaction region of the TESLA collider. TESLA-97-08 Google Scholar
  91. 91.
    P. Mora de Freitas, H. Videau, Detector simulation with MOKKA/GEANT4: present and future. LC-TOOL-2003-010 Google Scholar
  92. 92.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Mikael Berggren
    • 1
  • Felix Brümmer
    • 1
  • Jenny List
    • 1
  • Gudrid Moortgat-Pick
    • 2
  • Tania Robens
    • 3
  • Krzysztof Rolbiecki
    • 4
    • 5
  • Hale Sert
    • 1
    • 2
  1. 1.DESYHamburgGermany
  2. 2.Physics DepartmentUniversity of HamburgHamburgGermany
  3. 3.IKTPTU DresdenDresdenGermany
  4. 4.IFT-UAM/CSICMadridSpain
  5. 5.IFTUniversity of WarsawWarsawPoland

Personalised recommendations