An asymptotic safety scenario for gauged chiral Higgs–Yukawa models

  • Holger Gies
  • Stefan Rechenberger
  • Michael M. Scherer
  • Luca Zambelli
Regular Article - Theoretical Physics

Abstract

We investigate chiral Higgs–Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a “walking” mid-momentum regime.

References

  1. 1.
    K.G. Wilson, J.B. Kogut, Phys. Rep. 12, 75 (1974) ADSCrossRefGoogle Scholar
  2. 2.
    M. Luscher, P. Weisz, Nucl. Phys. B 295, 65 (1988) ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Luscher, P. Weisz, Nucl. Phys. B 318, 705 (1989) ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Hasenfratz, K. Jansen, C.B. Lang, T. Neuhaus, H. Yoneyama, Phys. Lett. B 199, 531 (1987) ADSCrossRefGoogle Scholar
  5. 5.
    U.M. Heller, H. Neuberger, P.M. Vranas, Nucl. Phys. B 399, 271 (1993). arXiv:hep-lat/9207024 ADSCrossRefGoogle Scholar
  6. 6.
    D.J.E. Callaway, Phys. Rep. 167, 241 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    O.J. Rosten, J. High Energy Phys. 0907, 019 (2009). arXiv:0808.0082 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    L.D. Landau, in Niels Bohr and the Development of Physics, ed. by W. Pauli (Pergamon, London, 1955) Google Scholar
  9. 9.
    M. Gell-Mann, F.E. Low, Phys. Rev. 95, 1300 (1954) ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    M. Goeckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stuben, Phys. Rev. Lett. 80, 4119 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    M. Goeckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stuben, Nucl. Phys. Proc. Suppl. 63, 694 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    H. Gies, J. Jaeckel, Phys. Rev. Lett. 93, 110405 (2004). arXiv:hep-ph/0405183 ADSCrossRefGoogle Scholar
  13. 13.
    H. Gies, M.M. Scherer, Eur. Phys. J. C 66, 387 (2010). arXiv:0901.2459 [hep-th] ADSCrossRefGoogle Scholar
  14. 14.
    H. Gies, S. Rechenberger, M.M. Scherer, Eur. Phys. J. C 66, 403 (2010). arXiv:0907.0327 [hep-th] ADSCrossRefGoogle Scholar
  15. 15.
    M.M. Scherer, H. Gies, S. Rechenberger, Acta Phys. Polon. Supp. 2, 541 (2009). arXiv:0910.0395 [hep-th] Google Scholar
  16. 16.
    W. Wetzel, Nucl. Phys. B 196, 259 (1982) ADSCrossRefGoogle Scholar
  17. 17.
    W. Bernreuther, W. Wetzel, Nucl. Phys. B 197, 228 (1982). Erratum B 513, 758 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Schroder, M. Steinhauser, J. High Energy Phys. 0601, 051 (2006). arXiv:hep-ph/0512058 ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    S. Weinberg, in C76-07-23.1 HUTP-76/160. Erice Subnucl. Phys., vol. 1 (1976) Google Scholar
  20. 20.
    K.G. Wilson, Phys. Rev. D 7, 2911 (1973) ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    B. Rosenstein, B.J. Warr, S.H. Park, Phys. Rev. Lett. 62, 1433 (1989) ADSCrossRefGoogle Scholar
  22. 22.
    K. Gawedzki, A. Kupiainen, Phys. Rev. Lett. 55, 363 (1985) ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    C. de Calan, P.A. Faria da Veiga, J. Magnen, R. Seneor, Phys. Rev. Lett. 66, 3233 (1991) ADSCrossRefGoogle Scholar
  24. 24.
    J. Braun, H. Gies, D.D. Scherer, Phys. Rev. D 83, 085012 (2011). arXiv:1011.1456 [hep-th] ADSCrossRefGoogle Scholar
  25. 25.
    G. Parisi, Nucl. Phys. B 100, 368 (1975) ADSCrossRefGoogle Scholar
  26. 26.
    S. Hands, Phys. Rev. D 51, 5816 (1995). arXiv:hep-th/9411016 ADSCrossRefGoogle Scholar
  27. 27.
    S. Christofi, S. Hands, C. Strouthos, Phys. Rev. D 75, 101701 (2007). arXiv:hep-lat/0701016 ADSCrossRefGoogle Scholar
  28. 28.
    H. Gies, L. Janssen, Phys. Rev. D 82, 085018 (2010). arXiv:1006.3747 [hep-th] ADSCrossRefGoogle Scholar
  29. 29.
    L. Janssen, PhD thesis, Jena U. (2012). www.db-thueringen.de/servlets/DocumentServlet?id=20856
  30. 30.
    S. Chandrasekharan, A. Li, Phys. Rev. Lett. 108, 140404 (2012). arXiv:1111.7204 [hep-lat]; arXiv:1304.7761 [hep-lat] ADSCrossRefGoogle Scholar
  31. 31.
    M. Reuter, Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030 ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2002). arXiv:hep-th/0108040 ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    O. Lauscher, M. Reuter, Class. Quantum Gravity 19, 483 (2002). arXiv:hep-th/0110021 ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    W. Souma, Prog. Theor. Phys. 102, 181 (1999). arXiv:hep-th/9907027 ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    P. Forgacs, M. Niedermaier, arXiv:hep-th/0207028
  36. 36.
    R. Percacci, D. Perini, Phys. Rev. D 67, 081503 (2003). arXiv:hep-th/0207033 ADSCrossRefGoogle Scholar
  37. 37.
    A. Codello, R. Percacci, C. Rahmede, Int. J. Mod. Phys. A 23, 143 (2008). arXiv:0705.1769 [hep-th] ADSCrossRefGoogle Scholar
  38. 38.
    M. Reuter, F. Saueressig, New J. Phys. 14, 055022 (2012) ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    R. Percacci, D. Perini, Phys. Rev. D 68, 044018 (2003). arXiv:hep-th/0304222 ADSCrossRefGoogle Scholar
  40. 40.
    A. Eichhorn, Phys. Rev. D 86, 105021 (2012). arXiv:1204.0965 [gr-qc] ADSCrossRefGoogle Scholar
  41. 41.
    O. Zanusso, L. Zambelli, G.P. Vacca, R. Percacci, Phys. Lett. B 689, 90 (2010). arXiv:0904.0938 [hep-th] ADSCrossRefGoogle Scholar
  42. 42.
    G.P. Vacca, O. Zanusso, Phys. Rev. Lett. 105, 231601 (2010). arXiv:1009.1735 [hep-th] ADSCrossRefGoogle Scholar
  43. 43.
    A. Eichhorn, H. Gies, New J. Phys. 13, 125012 (2011). arXiv:1104.5366 [hep-th] ADSCrossRefGoogle Scholar
  44. 44.
    U. Harst, M. Reuter, J. High Energy Phys. 1105, 119 (2011). arXiv:1101.6007 [hep-th] ADSCrossRefGoogle Scholar
  45. 45.
    H. Gies, J. Jaeckel, C. Wetterich, Phys. Rev. D 69, 105008 (2004). arXiv:hep-ph/0312034 ADSCrossRefGoogle Scholar
  46. 46.
    F. Bazzocchi, M. Fabbrichesi, R. Percacci, A. Tonero, L. Vecchi, Phys. Lett. B 705, 388 (2011). arXiv:1105.1968 [hep-ph] ADSCrossRefGoogle Scholar
  47. 47.
    J.M. Schwindt, C. Wetterich, arXiv:0812.4223 [hep-th]
  48. 48.
    S. Kim, A. Kocic, J.B. Kogut, Nucl. Phys. B 429, 407 (1994). arXiv:hep-lat/9402016 ADSCrossRefGoogle Scholar
  49. 49.
    J. Zinn-Justin, Nucl. Phys. B 367, 105 (1991) ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti, Y. Shen, Nucl. Phys. B 365, 79 (1991) ADSCrossRefGoogle Scholar
  51. 51.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964) ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    P.W. Higgs, Phys. Lett. 12, 132 (1964) ADSCrossRefGoogle Scholar
  53. 53.
    P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964) ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964) ADSCrossRefGoogle Scholar
  55. 55.
    R.D. Ball, Phys. Rep. 182, 1 (1989) ADSCrossRefMathSciNetGoogle Scholar
  56. 56.
    E. Witten, Phys. Lett. B 117, 324 (1982) ADSCrossRefMathSciNetGoogle Scholar
  57. 57.
    C. Wetterich, Phys. Lett. B 301, 90 (1993) ADSCrossRefGoogle Scholar
  58. 58.
    D.F. Litim, J.M. Pawlowski, in The Exact Renormalization Group, ed. by A. Krasnitz et al. (World Sci., Singapore, 1999), p. 168 Google Scholar
  59. 59.
    J.M. Pawlowski, Ann. Phys. 322, 2831 (2007). arXiv:hep-th/0512261 ADSCrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    H. Gies, Lect. Notes Phys. 852, 287 (2012). arXiv:hep-ph/0611146 ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    K. Aoki, Int. J. Mod. Phys. B 14, 1249 (2000) ADSMATHGoogle Scholar
  62. 62.
    J. Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002). arXiv:hep-ph/0005122 ADSCrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    B. Delamotte, Lect. Notes Phys. 852, 49 (2012). arXiv:cond-mat/0702365 [COND-MAT] ADSCrossRefMathSciNetGoogle Scholar
  64. 64.
    P. Kopietz, L. Bartosch, F. Schutz, Lect. Notes Phys. 798, 1 (2010) MathSciNetGoogle Scholar
  65. 65.
    J. Braun, J. Phys. G 39, 033001 (2012). arXiv:1108.4449 ADSCrossRefGoogle Scholar
  66. 66.
    S. Nagy, arXiv:1211.4151 [hep-th]
  67. 67.
    M. Reuter, C. Wetterich, Nucl. Phys. B 417, 181 (1994). arXiv:hep-th/9411227 ADSCrossRefGoogle Scholar
  68. 68.
    M. Reuter, C. Wetterich, Phys. Rev. D 56, 7893 (1997). arXiv:hep-th/9708051 ADSCrossRefGoogle Scholar
  69. 69.
    U. Ellwanger, Phys. Lett. B 335, 364 (1994). arXiv:hep-th/9402077 ADSCrossRefGoogle Scholar
  70. 70.
    J.M. Pawlowski, Int. J. Mod. Phys. A 16, 2105 (2001) ADSCrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    J.M. Pawlowski, Acta Phys. Slovaca 52, 475 (2002) Google Scholar
  72. 72.
    D.F. Litim, J.M. Pawlowski, Phys. Lett. B 546, 279 (2002). arXiv:hep-th/0208216 ADSCrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    F. Freire, D. Litim, J.M. Pawlowski, Phys. Lett. B 495, 256–262 (2000) ADSCrossRefGoogle Scholar
  74. 74.
    H. Gies, Phys. Rev. D 66, 025006 (2002). arXiv:hep-th/0202207 ADSCrossRefMathSciNetGoogle Scholar
  75. 75.
    V. Branchina, K.A. Meissner, G. Veneziano, Phys. Lett. B 574, 319 (2003). arXiv:hep-th/0309234 ADSCrossRefMATHMathSciNetGoogle Scholar
  76. 76.
    J.M. Pawlowski, arXiv:hep-th/0310018
  77. 77.
    L.F. Abbott, Nucl. Phys. B 185, 189 (1981) ADSCrossRefGoogle Scholar
  78. 78.
    W. Dittrich, M. Reuter, Lect. Notes Phys. 244, 1 (1986) ADSCrossRefMathSciNetGoogle Scholar
  79. 79.
    J. Frohlich, G. Morchio, F. Strocchi, Nucl. Phys. B 190, 553 (1981) ADSCrossRefMathSciNetGoogle Scholar
  80. 80.
    A. Maas, arXiv:1205.6625 [hep-lat]
  81. 81.
    A. Maas, T. Mufti, arXiv:1211.5301 [hep-lat]
  82. 82.
    U. Ellwanger, M. Hirsch, A. Weber, Z. Phys. C 69, 687 (1996). arXiv:hep-th/9506019 CrossRefMathSciNetGoogle Scholar
  83. 83.
    D.F. Litim, J.M. Pawlowski, Phys. Lett. B 435, 181 (1998). arXiv:hep-th/9802064 ADSCrossRefGoogle Scholar
  84. 84.
    D.F. Litim, Phys. Lett. B 486, 92 (2000). arXiv:hep-th/0005245 ADSCrossRefGoogle Scholar
  85. 85.
    D.F. Litim, Phys. Rev. D 64, 105007 (2001). arXiv:hep-th/0103195 ADSCrossRefGoogle Scholar
  86. 86.
    S. Weinberg, in General Relativity, ed. by S.W. Hawking, W. Israel (1979), pp. 790–831 Google Scholar
  87. 87.
    M. Reuter, Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030 ADSCrossRefMathSciNetGoogle Scholar
  88. 88.
    M. Niedermaier, M. Reuter, Living Rev. Relativ. 9, 5 (2006) ADSCrossRefGoogle Scholar
  89. 89.
    R. Percacci, in Approaches to quantum gravity, ed. by D. Oriti (2007), pp. 111–128. arXiv:0709.3851 [hep-th] Google Scholar
  90. 90.
    M. Reuter, F. Saueressig, New J. Phys. 14, 055022 (2012). arXiv:1202.2274 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  91. 91.
    D.F. Litim, J.M. Pawlowski, L. Vergara, arXiv:hep-th/0602140
  92. 92.
    L. Maiani, G. Parisi, R. Petronzio, Nucl. Phys. B 136, 115 (1978) ADSCrossRefGoogle Scholar
  93. 93.
    M. Lindner, Z. Phys. C 31, 295 (1986) ADSCrossRefGoogle Scholar
  94. 94.
    T. Hambye, K. Riesselmann, Phys. Rev. D 55, 7255 (1997). arXiv:hep-ph/9610272 ADSCrossRefGoogle Scholar
  95. 95.
    G. Altarelli, G. Isidori, Phys. Lett. B 337, 141 (1994) ADSCrossRefGoogle Scholar
  96. 96.
    J.A. Casas, J.R. Espinosa, M. Quiros, Phys. Lett. B 342, 171 (1995). arXiv:hep-ph/9409458 ADSCrossRefGoogle Scholar
  97. 97.
    G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, J. High Energy Phys. 1208, 098 (2012). arXiv:1205.6497 [hep-ph] ADSCrossRefGoogle Scholar
  98. 98.
    K. Holland, J. Kuti, Nucl. Phys. Proc. Suppl. 129, 765 (2004). arXiv:hep-lat/0308020 ADSCrossRefGoogle Scholar
  99. 99.
    K. Holland, Nucl. Phys. Proc. Suppl. 140, 155 (2005). arXiv:hep-lat/0409112 ADSCrossRefGoogle Scholar
  100. 100.
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, Proc. Sci., Lattice 2007, 056 (2007). arXiv:0710.3151 [hep-lat] Google Scholar
  101. 101.
    P. Gerhold, K. Jansen, J. High Energy Phys. 0907, 025 (2009). arXiv:0902.4135 [hep-lat] ADSCrossRefGoogle Scholar
  102. 102.
    P. Gerhold, K. Jansen, J. High Energy Phys. 1004, 094 (2010). arXiv:1002.4336 [hep-lat] ADSCrossRefGoogle Scholar
  103. 103.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  104. 104.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  105. 105.
    S. Rechenberger, Diploma thesis, Friedrich-Schiller-Universität Jena, March 2010 Google Scholar
  106. 106.
    L. Zambelli, PhD thesis, Bologna University, January 2013 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Holger Gies
    • 1
  • Stefan Rechenberger
    • 2
    • 3
  • Michael M. Scherer
    • 4
  • Luca Zambelli
    • 1
    • 5
  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut für PhysikJohannes-Gutenberg-Universität MainzMainzGermany
  3. 3.Faculty of Science (IMAPP)Radboud University NijmegenNijmegenThe Netherlands
  4. 4.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  5. 5.Dip. di FisicaUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations