Advertisement

Einstein–Maxwell gravity with additional corrections

  • S. H. HendiEmail author
Regular Article - Theoretical Physics

Abstract

Motivated by the E 8×E 8 heterotic string theory, we obtain topological black hole solutions of Einstein–Maxwell gravity with additional corrections. We consider the Gauss–Bonnet (GB) and (F μν F μν )2 terms as an effective quartic order Lagrangian of gauge–gravity coupling and investigate geometric and thermodynamic properties of the black hole solutions. We also analyze the effects of the GB term as well as the correction of Maxwell field on the properties of the solutions.

Keywords

Black Hole Black Hole Solution Einstein Gravity Maxwell Field Lovelock Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We wish to thank Shiraz University Research Council. This work has been supported financially by Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Iran.

References

  1. 1.
    D. Lovelock, J. Math. Phys. 12, 498 (1971) MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    B. Zumino, Phys. Rep. 137, 109 (1986) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D.J. Gross, E. Witten, Nucl. Phys. B 277, 1 (1986) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    R.R. Metsaev, A.A. Tseytlin, Phys. Lett. B 191, 354 (1987) ADSCrossRefGoogle Scholar
  5. 5.
    C.G. Callan, R.C. Myers, M.J. Perry, Nucl. Phys. B 311, 673 (1988) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    R.C. Myers, Phys. Rev. D 36, 392 (1987) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M.H. Dehghani, N. Alinejadi, S.H. Hendi, Phys. Rev. D 77, 104025 (2008) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S.H. Hendi, M.H. Dehghani, Phys. Lett. B 666, 116 (2008) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S.H. Hendi, S. Panahiyan, H. Mohammadpour, Eur. Phys. J. C 72, 2184 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Liu, P. Szepietowski, Higher derivative corrections to R-charged AdS5 black holes and field redefinitions. arXiv:0806.1026
  11. 11.
    R.C. Myers, Phys. Rev. D 36, 392 (1987) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    S.C. Davis, Phys. Rev. D 67, 024030 (2003) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J.D. Brown, J.W. York, Phys. Rev. D 47, 1407 (1993) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S.W. Hawking, Nature 248, 30 (1974) ADSCrossRefGoogle Scholar
  16. 16.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1974) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    S.W. Hawking, C.J. Hunter, Phys. Rev. D 59, 044025 (1999) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    S.W. Hawking, C.J. Hunter, D.N. Page, Phys. Rev. D 59, 044033 (1999) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    R.B. Mann, Phys. Rev. D 60, 104047 (1999) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    R.B. Mann, Phys. Rev. D 61, 084013 (2000) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    M. Lu, M.B. Wise, Phys. Rev. D 47, R3095 (1993) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    M. Visser, Phys. Rev. D 48, 583 (1993) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    T. Jacobson, R.C. Myers, Phys. Rev. Lett. 70, 3684 (1993) MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. 24.
    R.M. Wald, Phys. Rev. D 48, R3427 (1993) MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Visser, Phys. Rev. D 48, 5697 (1993) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    T. Jacobson, G. Kang, R.C. Myers, Phys. Rev. D 49, 6587 (1994) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    V. Iyer, R.M. Wald, Phys. Rev. D 50, 846 (1994) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Physics Department and Biruni Observatory, College of SciencesShiraz UniversityShirazIran
  2. 2.Research Institute for Astrophysics and Astronomy of Maragha (RIAAM)MaraghaIran

Personalised recommendations