Advertisement

Interpretation of the measurements of total, elastic, and diffractive cross sections at LHC

  • Paolo Lipari
  • Maurizio LusignoliEmail author
Regular Article - Theoretical Physics

Abstract

Recently at LHC one has obtained measurements of the total, elastic, and diffractive cross sections in pp collisions at very high energy. The total cross section is in good agreement with predictions based on a leading behavior σ tot(s)∝(lns/s 0)2, on the other hand the elastic cross section is lower than most expectations and the diffractive cross section is higher. It is remarkable that the ratio (σ el+σ diff)/σ tot calculated combining the results of the TOTEM and ALICE detectors is \(0.495^{+0.05}_{-0.06}\), very close to the maximum theoretically allowed value of 1/2 known as the Miettinen–Pumplin bound. In this work we discuss these results using the frameworks of single- and multi-channel eikonal models, and we outline the main difficulties for a consistent interpretation of the data.

Keywords

Elastic Cross Section Inelastic Cross Section Parton Cross Section Optical Theorem Average Multiplicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Lia Pancheri, Yogi Srivastava, and Daniel Fagundes for many discussions on the problems discussed in this work.

References

  1. 1.
    G. Antchev et al. (TOTEM Collaboration), Europhys. Lett. 96, 21002 (2011). arXiv:1110.1395 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    G. Antchev et al. (TOTEM Collaboration), Europhys. Lett. 101, 21002 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    G. Antchev et al. (TOTEM Collaboration), Europhys. Lett. 95, 41001 (2011). arXiv:1110.1385 [hep-ex] ADSCrossRefGoogle Scholar
  4. 4.
    G. Antchev et al. (The TOTEM Collaboration), Europhys. Lett. 101, 21003 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    G. Antchev et al. (The TOTEM Collaboration), Europhys. Lett. 101, 21004 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    G. Antchev et al. (TOTEM Collaboration), preprint CERN-PH-EP-2012-354 (2012) Google Scholar
  7. 7.
    B. Abelev et al. (The ALICE Collaboration), arXiv:1208.4968 [hep-ex]
  8. 8.
    G. Aad et al. (ATLAS Collaboration), Nat. Commun. 2, 463 (2011). arXiv:1104.0326 [hep-ex] CrossRefGoogle Scholar
  9. 9.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 722, 5 (2013). arXiv:1210.6718 [hep-ex] ADSCrossRefGoogle Scholar
  10. 10.
    H.I. Miettinen, J. Pumplin, Phys. Rev. D 18, 1696 (1978) ADSGoogle Scholar
  11. 11.
    O. Adriani et al., Phys. Lett. B 703, 128 (2011). arXiv:1104.5294 [hep-ex] ADSCrossRefGoogle Scholar
  12. 12.
    M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 72, 1937 (2012). arXiv:1201.6298 [hep-ph] ADSCrossRefGoogle Scholar
  13. 13.
    E. Gotsman, E. Levin, U. Maor, Phys. Rev. D 85, 094007 (2012). arXiv:1203.2419 [hep-ph] ADSGoogle Scholar
  14. 14.
    E. Gotsman, E. Levin, U. Maor, Phys. Lett. B 716, 425 (2012). arXiv:1208.0898 [hep-ph] ADSCrossRefGoogle Scholar
  15. 15.
    A. Grau, S. Pacetti, G. Pancheri, Y.N. Srivastava, Phys. Lett. B 714, 70 (2012). arXiv:1206.1076 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    B.Z. Kopeliovich, I.K. Potashnikova, B. Povh, Phys. Rev. D 86, 051502 (2012). arXiv:1208.5446 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Fagundes, M.J. Menon, P.V.R.G. Silva, J. Phys. G 40, 065005 (2013). arXiv:1208.3456 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    E. Nagy et al., Nucl. Phys. B 150, 221 (1979) ADSCrossRefGoogle Scholar
  19. 19.
    M. Ambrosio et al., Phys. Lett. B 115, 495 (1982) ADSCrossRefGoogle Scholar
  20. 20.
    A. Breakstone et al., Nucl. Phys. B 248, 253–260 (1984) ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Cudell et al. (COMPETE Collaboration), Phys. Rev. Lett. 89, 201801 (2002). hep-ph/0206172 ADSCrossRefGoogle Scholar
  22. 22.
    L. Durand, H. Pi, Phys. Rev. D 38, 78 (1988) ADSGoogle Scholar
  23. 23.
    F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 5518 (1994) ADSGoogle Scholar
  24. 24.
    F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 5550 (1994) ADSGoogle Scholar
  25. 25.
    C. Avila et al. (E811 Collaboration), Phys. Lett. B 445, 419 (1999) ADSCrossRefGoogle Scholar
  26. 26.
    T.K. Gaisser, F. Halzen, Phys. Rev. Lett. 54, 1754 (1985) ADSCrossRefGoogle Scholar
  27. 27.
    G. Pancheri, Y. Srivastava, Phys. Lett. B 159, 69 (1985) ADSCrossRefGoogle Scholar
  28. 28.
    A. Grau, G. Pancheri, Y.N. Srivastava, Phys. Rev. D 60, 114020 (1999). hep-ph/9905228 ADSGoogle Scholar
  29. 29.
    R.M. Godbole, A. Grau, G. Pancheri, Y.N. Srivastava, Phys. Rev. D 72, 076001 (2005). hep-ph/0408355 ADSGoogle Scholar
  30. 30.
    E.G.S. Luna, A.F. Martini, M.J. Menon, A. Mihara, A.A. Natale, Phys. Rev. D 72, 034019 (2005). hep-ph/0507057 ADSGoogle Scholar
  31. 31.
    A. Achilli, R.M. Godbole, A. Grau, G. Pancheri, O. Shekhovtsova, Y.N. Srivastava, Phys. Rev. D 84, 094009 (2011). arXiv:1102.1949 [hep-ph] ADSGoogle Scholar
  32. 32.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph] ADSCrossRefGoogle Scholar
  33. 33.
    T. Sjostrand, M. van Zijl, Phys. Rev. D 36, 2019 (1987) ADSGoogle Scholar
  34. 34.
    A. Buckley et al., Phys. Rep. 504, 145 (2011). arXiv:1101.2599 [hep-ph] ADSCrossRefGoogle Scholar
  35. 35.
    P. Bartalini et al., arXiv:1111.0469 [hep-ph]
  36. 36.
    I. Borozan, M.H. Seymour, J. High Energy Phys. 0209, 015 (2002). hep-ph/0207283 ADSCrossRefGoogle Scholar
  37. 37.
    M. Bahr et al., Eur. Phys. J. C 58, 639 (2008). arXiv:0803.0883 [hep-ph] ADSCrossRefGoogle Scholar
  38. 38.
    M. Diehl, D. Ostermeier, A. Schafer, J. High Energy Phys. 1203, 089 (2012). arXiv:1111.0910 [hep-ph] ADSCrossRefGoogle Scholar
  39. 39.
    L. Durand, H. Pi, Phys. Rev. D 40, 1436 (1989) ADSCrossRefGoogle Scholar
  40. 40.
    M.M. Block, F. Halzen, Phys. Rev. D 72, 036006 (2005). Erratum-ibid. D 72, 039902 (2005). hep-ph/0506031 ADSGoogle Scholar
  41. 41.
    R. Corke, T. Sjöstrand, J. High Energy Phys. 1105, 009 (2011). arXiv:1101.5953 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    M.L. Good, W.D. Walker, Phys. Rev. 120, 1857 (1960) ADSCrossRefGoogle Scholar
  43. 43.
    R. Engel, Z. Phys. C 66, 203 (1995) MathSciNetADSGoogle Scholar
  44. 44.
    P. Lipari, M. Lusignoli, Phys. Rev. D 80, 074014 (2009). arXiv:0908.0495 [hep-ph] ADSGoogle Scholar
  45. 45.
    H.I. Miettinen, G.H. Thomas, Nucl. Phys. B 166, 365 (1980) ADSCrossRefGoogle Scholar
  46. 46.
    R.D. Schamberger, J. Lee-Franzini, R. Mccarthy, S. Childress, P. Franzini, Phys. Rev. Lett. 34, 1121 (1975) ADSCrossRefGoogle Scholar
  47. 47.
    J.C.M. Armitage et al., Nucl. Phys. B 194, 365 (1982) ADSCrossRefGoogle Scholar
  48. 48.
    D. Bernard et al. (UA4 Collaboration), Phys. Lett. B 186, 227 (1987) ADSCrossRefGoogle Scholar
  49. 49.
    R.E. Ansorge et al. (UA5 Collaboration), Z. Phys. C 33, 175 (1986) ADSGoogle Scholar
  50. 50.
    N.A. Amos et al. (E710 Collaboration), Phys. Lett. B 301, 313 (1993) ADSCrossRefGoogle Scholar
  51. 51.
    F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 5535 (1994) ADSGoogle Scholar
  52. 52.
    K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.INFN sezione Roma “La Sapienza”RomeItaly
  2. 2.Dipartimento di Fisica and sezione INFNUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations