Direct chargino–neutralino production at the LHC: interpreting the exclusion limits in the complex MSSM

Regular Article - Theoretical Physics

Abstract

We re-assess the exclusion limits on the parameters describing the supersymmetric (SUSY) electroweak sector of the MSSM obtained from the search for direct chargino–neutralino production at the LHC. We start from the published limits obtained for simplified models, where for the case of heavy sleptons the relevant branching ratio, \(\mathrm {BR}(\tilde{\chi}^{0}_{2} \to \tilde{\chi}^{0}_{1} Z)\), is set to one. We show how the decay mode \(\tilde{\chi}^{0}_{2} \to \tilde{\chi}^{0}_{1} h\), which cannot be neglected in any realistic model once kinematically allowed, substantially reduces the excluded parameter region. We analyze the dependence of the excluded regions on the phase of the gaugino soft SUSY-breaking mass parameter, M1, on the mass of the light scalar tau, \(m_{{\tilde{\tau}_{1}}}\), on tanβ as well as on the squark and slepton mass scales. Large reductions in the ranges of parameters excluded can be observed in all scenarios. The branching ratios of charginos and neutralinos are evaluated using a full NLO calculation for the complex MSSM. The size of the effects of the NLO calculation on the exclusion bounds is investigated. We furthermore assess the potential reach of the experimental analyses after collecting 100 fb−1 at the LHC running at 13 TeV.

Notes

Acknowledgements

We thank A. Calderón, J. Dietrich, M. Elsing, A. Höcker, N. Kauer, F. Moortgat, G. Moortgat-Pick, T. Potter, W. Waltenberger and G. Weiglein for helpful discussions. A.B. gratefully acknowledges support of the DFG through the grant SFB 676, “Particles, Strings, and the Early Universe”. The work of S.H. was partially supported by CICYT (grant FPA 2010–22163-C02-01). F.v.d.P. was supported by the Spanish MICINN’s Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. We thank the GRID computing network at IFCA for technical help with the OpenStack cloud infrastructure.

References

  1. 1.
    H. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    H. Haber, G. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  3. 3.
    R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988) CrossRefGoogle Scholar
  4. 4.
    H. Dreiner, in Perspectives on Supersymmetry II, ed. by G.L. Kane (1997), pp. 565–583. arXiv:hep-ph/9707435 Google Scholar
  5. 5.
    H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983) ADSCrossRefGoogle Scholar
  6. 6.
    J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984) ADSCrossRefGoogle Scholar
  7. 7.
    G. Aad et al. (ATLAS Collaboration), arXiv:1207.7214 [hep-ex]
  8. 8.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.7235 [hep-ex]
  9. 9.
    R. Mahbubani, M. Papucci, G. Perez, J. Ruderman, A. Weiler, arXiv:1212.3328 [hep-ph]
  10. 10.
    S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger, J. Gunion, S. Heinemeyer, M. Krämer et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph] ADSCrossRefGoogle Scholar
  11. 11.
    M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, arXiv:1210.7184 [hep-ph]
  12. 12.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 718, 841 (2013). arXiv:1208.3144 [hep-ex] ADSCrossRefGoogle Scholar
  13. 13.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1209.6620 [hep-ex]
  14. 14.
    H. Baer, C.-h. Chen, F. Paige, X. Tata, Phys. Rev. D 50, 4508 (1994). arXiv:hep-ph/9404212 ADSCrossRefGoogle Scholar
  15. 15.
    H. Baer, V. Barger, S. Kraml, A. Lessa, W. Sreethawong, X. Tata, J. High Energy Phys. 1203, 092 (2012). arXiv:1201.5382 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    H. Baer, V. Barger, P. Huang, J. High Energy Phys. 1111, 031 (2011). arXiv:1107.5581 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, W. Sreethawong, X. Tata, arXiv:1302.5816 [hep-ph]
  18. 18.
    M. Cabrera, J. Casas, B. Zaldivar, arXiv:1212.5247 [hep-ph]
  19. 19.
    H. Baer, V. Barger, A. Lessa, W. Sreethawong, X. Tata, Phys. Rev. D 85, 055022 (2012). arXiv:1201.2949 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    P. Byakti, D. Ghosh, Phys. Rev. D 86, 095027 (2012). arXiv:1204.0415 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    D. Ghosh, M. Guchait, D. Sengupta, Eur. Phys. J. C 72, 2141 (2012). arXiv:1202.4937 [hep-ph] ADSCrossRefGoogle Scholar
  22. 22.
    ATLAS Collaboration, ATLAS-CONF-2012-154 Google Scholar
  23. 23.
    ATLAS Collaboration, ATLAS-CONF-2013-028 Google Scholar
  24. 24.
    ATLAS Collaboration, ATLAS-CONF-2013-035 Google Scholar
  25. 25.
    ATLAS Collaboration, ATLAS-CONF-2013-049 Google Scholar
  26. 26.
    S. Chatrchyan et al. (CMS Collaboration), CMS PAS SUS-12-022 Google Scholar
  27. 27.
    W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira, P. Zerwas, Phys. Rev. Lett. 83, 3780 (1999). Erratum 100, 029901 (2008). arXiv:hep-ph/9906298 ADSCrossRefGoogle Scholar
  28. 28.
    B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, J. High Energy Phys. 1210, 081 (2012). arXiv:1207.2159 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    N. Baro, F. Boudjema, Phys. Rev. D 80, 076010 (2009). arXiv:0906.1665 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    J. Fujimoto, T. Ishikawa, Y. Kurihara, M. Jimbo, T. Kon, M. Kuroda, Phys. Rev. D 75, 113002 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    S. Liebler, W. Porod, Nucl. Phys. B 849, 213 (2011). Erratum B 856, 125 (2012). arXiv:1011.6163 [hep-ph] ADSCrossRefMATHGoogle Scholar
  32. 32.
    M. Drees, W. Hollik, Q. Xu, J. High Energy Phys. 0702, 032 (2007). arXiv:hep-ph/0610267 ADSCrossRefGoogle Scholar
  33. 33.
    W. Yang, D. Du, Phys. Rev. D 67, 055004 (2003). arXiv:hep-ph/0211453 ADSCrossRefGoogle Scholar
  34. 34.
    H. Eberl, T. Gajdosik, W. Majerotto, B. Schrausser, Phys. Lett. B 618, 171 (2005). arXiv:hep-ph/0502112 ADSCrossRefGoogle Scholar
  35. 35.
    A. Bharucha, A. Fowler, G. Moortgat-Pick, G. Weiglein, J. High Energy Phys. 1305, 053 (2013). arXiv:1211.3134 [hep-ph] ADSCrossRefGoogle Scholar
  36. 36.
    S. Heinemeyer, F. von der Pahlen, C. Schappacher, Eur. Phys. J. C 72, 1892 (2012). arXiv:1112.0760 [hep-ph] ADSCrossRefGoogle Scholar
  37. 37.
    A. Bharucha, S. Heinemeyer, F. von der Pahlen, C. Schappacher, Phys. Rev. D 86, 075023 (2012). arXiv:1208.4106 [hep-ph] ADSCrossRefGoogle Scholar
  38. 38.
    A. Bharucha, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki, G. Weiglein, arXiv:1211.3745 [hep-ph]
  39. 39.
    T. Takagi, Jpn. J. Math. 1, 83 (1925) Google Scholar
  40. 40.
    V. Barger, T. Falk, T. Han, J. Jiang, T. Li, T. Plehn, Phys. Rev. D 64, 056007 (2001). arXiv:hep-ph/0101106 ADSCrossRefGoogle Scholar
  41. 41.
    A. Pilaftsis, Phys. Rev. D 58, 096010 (1998). arXiv:hep-ph/9803297 ADSCrossRefGoogle Scholar
  42. 42.
    A. Pilaftsis, Phys. Lett. B 435, 88 (1998). arXiv:hep-ph/9805373 ADSCrossRefGoogle Scholar
  43. 43.
    D. Demir, Phys. Rev. D 60, 055006 (1999). arXiv:hep-ph/9901389 ADSCrossRefGoogle Scholar
  44. 44.
    A. Pilaftsis, C. Wagner, Nucl. Phys. B 553, 3 (1999). arXiv:hep-ph/9902371 ADSCrossRefGoogle Scholar
  45. 45.
    S. Heinemeyer, Eur. Phys. J. C 22, 521 (2001). arXiv:hep-ph/0108059 ADSCrossRefGoogle Scholar
  46. 46.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320 ADSCrossRefMATHGoogle Scholar
  47. 47.
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009). www.feynhiggs.de ADSCrossRefMATHGoogle Scholar
  48. 48.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  49. 49.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  50. 50.
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  51. 51.
    J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990) ADSCrossRefGoogle Scholar
  52. 52.
    T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260 ADSCrossRefMATHGoogle Scholar
  53. 53.
    T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349 ADSCrossRefMATHGoogle Scholar
  54. 54.
    A. Dobado, M. Herrero, S. Peñaranda, Eur. Phys. J. C 17, 487 (2000). arXiv:hep-ph/0002134 ADSCrossRefGoogle Scholar
  55. 55.
    J. Gunion, H. Haber, Phys. Rev. D 67, 075019 (1993). arXiv:hep-ph/0207010 ADSCrossRefGoogle Scholar
  56. 56.
    H. Haber, Y. Nir, Phys. Lett. B 306, 327 (1993). arXiv:hep-ph/9302228 ADSCrossRefGoogle Scholar
  57. 57.
  58. 58.
    B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, Eur. Phys. J. C 73, 2480 (2013). arXiv:1304.0790 [hep-ph] ADSCrossRefGoogle Scholar
  59. 59.
    T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565 ADSCrossRefGoogle Scholar
  60. 60.
    I. Campos, E. del Castillo, S. Heinemeyer, A. Lopez-Garcia, F. von der Pahlen, Eur. Phys. J. C 73, 2375 (2013). arXiv:1212.4784 [cs.DC] ADSCrossRefGoogle Scholar
  61. 61.
    C. Baker et al., Phys. Rev. Lett. 97, 131801 (2006). arXiv:hep-ex/0602020 ADSCrossRefGoogle Scholar
  62. 62.
    B. Regan, E. Commins, C. Schmidt, D. DeMille, Phys. Rev. Lett. 88, 071805 (2002) ADSCrossRefGoogle Scholar
  63. 63.
    W. Griffith, M. Swallows, T. Loftus, M. Romalis, B. Heckel, E. Fortson, Phys. Rev. Lett. 102, 101601 (2009) ADSCrossRefGoogle Scholar
  64. 64.
    J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Comput. Phys. Commun. 184, 1220 (2013). arXiv:1208.2212 [hep-ph] ADSCrossRefGoogle Scholar
  65. 65.
    J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Comput. Phys. Commun. 180, 312 (2009). arXiv:0712.2360 [hep-ph] ADSCrossRefGoogle Scholar
  66. 66.
    J. Lee, A. Pilaftsis, M. Carena, S. Choi, M. Drees, J. Ellis, C. Wagner, Comput. Phys. Commun. 156, 283 (2004). arXiv:hep-ph/0307377 ADSCrossRefGoogle Scholar
  67. 67.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov. arXiv:1305.0237 [hep-ph]
  68. 68.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov. arXiv:1005.4133 [hep-ph]
  69. 69.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov. arXiv:0803.2360 [hep-ph]
  70. 70.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059 ADSCrossRefMATHGoogle Scholar
  71. 71.
    P. Ade et al. (Planck Collaboration), arXiv:1303.5076 [astro-ph.CO]
  72. 72.
    H. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A. Weber, G. Weiglein, Eur. Phys. J. C 62, 547 (2009). arXiv:0901.3485 [hep-ph] ADSCrossRefGoogle Scholar
  73. 73.
    K. Howe, P. Saraswat, J. High Energy Phys. 1210, 065 (2012). arXiv:1208.1542 [hep-ph] ADSCrossRefGoogle Scholar
  74. 74.
    D. Demir, O. Lebedev, K.A. Olive, M. Pospelov, A. Ritz, Nucl. Phys. B 680, 339 (2004). arXiv:hep-ph/0311314 ADSCrossRefGoogle Scholar
  75. 75.
    J. Ellis, J.S. Lee, A. Pilaftsis, J. High Energy Phys. 1102, 045 (2011). arXiv:1101.3529 [hep-ph] ADSCrossRefGoogle Scholar
  76. 76.
    M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005). arXiv:hep-ph/0504231 ADSCrossRefMATHGoogle Scholar
  77. 77.
    A. Arbey, M. Battaglia, F. Mahmoudi, arXiv:1212.6865 [hep-ph]
  78. 78.
    J. Olsen, “CMS future plans”, talk given at Snowmass: Seattle Energy Frontier Workshop, July 1, 2013. https://indico.fnal.gov/getFile.py/access?contribId=10&sessionId=0&resId=0&materialId=slides&confId=6969
  79. 79.
    J. Campbell, R. Ellis, C. Williams, J. High Energy Phys. 1107, 018 (2011). arXiv:1105.0020 [hep-ph] ADSCrossRefGoogle Scholar
  80. 80.
    H. Baer, X. Tata, Phys. Rev. D 47, 2739 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • A. Bharucha
    • 1
  • S. Heinemeyer
    • 2
  • F. von der Pahlen
    • 2
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Instituto de Física de CantabriaCSIC-UCSantanderSpain

Personalised recommendations