Advertisement

A thermodynamically consistent quasi-particle model without density-dependent infinity of the vacuum zero-point energy

  • Liu-jun Luo
  • Jing Cao
  • Yan Yan
  • Wei-min Sun
  • Hong-shi ZongEmail author
Regular Article - Theoretical Physics

Abstract

In this paper, we generalize the improved quasi-particle model proposed in Cao et al. (Phys. Lett. B 711:65, 2012) from finite temperature and zero chemical potential to the case of finite chemical potential and zero temperature, and calculate the equation of state (EOS) for (2+1) flavor Quantum Chromodynamics (QCD) at zero temperature and high density. We first calculate the partition function at finite temperature and chemical potential, then go to the limit T=0 and obtain the equation of state (EOS) for cold and dense QCD, which is important for the study of neutron stars. Furthermore, we use this EOS to calculate the quark-number density, the energy density, the quark-number susceptibility and the speed of sound at zero temperature and finite chemical potential and compare our results with the corresponding ones in the existing literature.

Keywords

Partition Function Monte Carlo Neutron Star Finite Temperature Series Expansion Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (under Grant 11275097, 10935001, 11274166 and 11075075), the National Basic Research Program of China (under Grant 2012CB921504) and the Research Fund for the Doctoral Program of Higher Education (under Grant No 2012009111002).

References

  1. 1.
    Z. Fodor, S. Katz, Phys. Lett. B 534, 87 (2002) ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    M. D’Elia, M.P. Lombardo, Phys. Rev. D 67, 014505 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt, Phys. Rev. D 68, 014507 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    R.V. Gavai, S. Gupta, Phys. Rev. D 68, 034506 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    R.V. Gavai, S. Gupta, Phys. Rev. 72, 054006 (2005) ADSGoogle Scholar
  6. 6.
    S. Gupta, R. Ray, Phys. Rev. D 70, 114015 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    M. He, W.M. Sun, H.T. Feng, H.S. Zong, J. Phys. G 34, 2655 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    W.M. Sun, H.S. Zong, Int. J. Mod. Phys. A 22, 3201 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    H.S. Zong, W.M. Sun, Phys. Rev. D 78, 054001 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    C.R. Allton, M. Döring, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, K. Redlich, Phys. Rev. D 71, 054508 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Jiang, H. Li, S.S. Huang, W.M. Sun, H.S. Zong, J. Phys. G 37, 105004 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Jiang, H. Chen, W.M. Sun, H.S. Zong, J. High Energy Phys. 04, 014 (2013) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    F. Özel, Nature (London) 441, 1115 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    D. Nickel, J. Wambach, R. Alkofer, Phys. Rev. D 73, 114028 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Y.L. Tian, Y. Yan, H. Li, X.L. Luo, H.S. Zong, Phys. Rev. D 85, 045009 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Yan, J. Cao, X.L. Luo, W.M. Sun, H.S. Zong, Phys. Rev. D 86, 114028 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081–1083 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    P. Arnold, C.-X. Zhai, Phys. Rev. D 50, 7603 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    P. Arnold, C.-X. Zhai, Phys. Rev. D 51, 1906 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    C. Zhai, B. Kastening, Phys. Rev. D 52, 7232 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    D.P. Menezes, C. Providência, D.B. Melrose, J. Phys. G 32, 1081 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    A. Peshier, B. Kämpfer, G. Soff, Phys. Rev. C 61, 045203 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    P. Levai, U. Heinz, Phys. Rev. C 57, 1879 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    R.A. Schneider, W. Weise, Phys. Rev. C 64, 055201 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    K.K. Szabó, A.I. Tóth, J. High Energy Phys. 06, 008 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    M.A. Thaler, R.A. Schneider, W. Weise, Phys. Rev. C 69, 035210 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    M. Bluhm, B. Kämpfer, G. Soff, Phys. Lett. B 620, 131 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    M. Bluhm, B. Kämpfer, Phys. Rev. D 77, 034004 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    V.M. Bannur, Eur. Phys. J. C 50, 629 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    V.M. Bannur, Phys. Lett. B 647, 271 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    V.M. Bannur, Phys. Rev. C 75, 044905 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    V.M. Bannur, J. High Energy Phys. 09, 046 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    V.M. Bannur, Phys. Rev. C 78, 045206 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    P.K. Srivastava, S.K. Tiwari, C.P. Singh, Phys. Rev. D 82, 014023 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    S. Plumari, W.M. Alberico, V. Greco, C. Ratti, Phys. Rev. D 84, 094004 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    V. Chandra, V. Ravishankar, Phys. Rev. D 84, 074013 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    V. Goloviznin, H. Satz, Z. Phys. C 57, 671 (1993) ADSCrossRefGoogle Scholar
  39. 39.
    A. Peshier, B. Kämpfer, O.P. Pavlenko, G. Soff, Phys. Lett. B 337, 235 (1994) ADSCrossRefGoogle Scholar
  40. 40.
    M.I. Gorenstein, S.N. Yang, Phys. Rev. D 52, 5206 (1995) ADSCrossRefGoogle Scholar
  41. 41.
    F.G. Gardim, F.M. Steffens, Nucl. Phys. A 797, 50 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    J. Cao, Y. Jiang, W.M. Sun, H.S. Zong, Phys. Lett. B 711, 65 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    J.D. Walecka, Theoretical Nuclear and Subnuclear Physics (Oxford University Press, New York, 1995), Chap. 16 Google Scholar
  44. 44.
    J.I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, 1989) zbMATHGoogle Scholar
  45. 45.
    M. le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996) CrossRefGoogle Scholar
  46. 46.
    A. Peshier, B. Kämpfer, G. Soff, hep-ph/0106090v2
  47. 47.
    X.P. Zheng, K. Miao, X.W. Liu, S.H. Yang, Phys. Rev. C 72, 025809 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    E.S. Fraga, R.D. Pisarski, J. Schaffner-Bielich, Phys. Rev. D 63, 121702(R) (2001) ADSCrossRefGoogle Scholar
  49. 49.
    E.S. Fraga, R.D. Pisarski, J. Schaffner-Bielich, Nucl. Phys. A 702, 217c (2002) ADSCrossRefGoogle Scholar
  50. 50.
    M.A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, Phys. Rev. D 58, 096007 (1998) ADSCrossRefGoogle Scholar
  51. 51.
    M. He, J.F. Li, W.M. Sun, H.S. Zong, Phys. Rev. D 79, 036001 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    Y.B. Zhang, F.Y. Hou, Y. Jiang, W.M. Sun, H.S. Zong, Int. J. Mod. Phys. A 24, 2241 (2009) ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Liu-jun Luo
    • 1
  • Jing Cao
    • 2
  • Yan Yan
    • 2
  • Wei-min Sun
    • 2
    • 3
    • 4
  • Hong-shi Zong
    • 2
    • 3
    • 4
    Email author
  1. 1.Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, and Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Department of PhysicsNanjing UniversityNanjingChina
  3. 3.Joint Center for ParticleNuclear Physics and CosmologyNanjingChina
  4. 4.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsCASBeijingChina

Personalised recommendations