Advertisement

Gas–liquid transition in the model of particles interacting at high energy

  • S. BondarenkoEmail author
  • K. Komoshvili
Regular Article - Theoretical Physics

Abstract

An application of the ideas of the inertial confinement fusion process in the case of particles interacting at high energy is investigated. A possibility of the gas–liquid transition in the gas is considered using different approaches. In particular, a shock wave description of interactions between particles is studied and a self-similar solution of Euler’s equation is discussed. Additionally, the Boltzmann equation is solved for a self-consistent field (Vlasov’s equation) in the linear approximation for the case of a gas under external pressure and the corresponding change of the Knudsen number of the system is calculated.

Keywords

Shock Wave Boltzmann Equation External Field Bulk Viscosity Knudsen Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Shuryak, Nucl. Phys. B 195, 111 (2009) CrossRefGoogle Scholar
  2. 2.
    E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    B. Berdnikov, K. Rajagopal, Phys. Rev. D 61, 105017 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    M. Nahrgang, C. Herold, M. Bleicher, Nucl. Phys. A 904–905, 899c (2013) CrossRefGoogle Scholar
  5. 5.
    J. Steinheimer, J. Randrup, Phys. Rev. Lett. 109, 212301 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    V.V. Skokov, D.N. Voskresensky, Nucl. Phys. A 828, 401 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    V.V. Skokov, D.N. Voskresensky, JETP Lett. 90, 223 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J. Randrup, Phys. Rev. C 79, 054911 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    L.D. Landau, Izv. Akad. Nauk SSSR, Ser. Fiz. 17, 51 (1953) Google Scholar
  10. 10.
    D. Kharzeev, E. Levin, K. Tuchin, Phys. Rev. C 75, 044903 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 70, 533 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    U. Heinz, Phys. Rev. Lett. 51, 351 (1983) ADSCrossRefGoogle Scholar
  13. 13.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160(4), 189 (1988) ADSCrossRefGoogle Scholar
  14. 14.
    T. Peter, J. Meyer-ter-Vehn, Phys. Rev. A 43, 1998 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    G. Torrieri, arXiv:0911.5479 [nucl-th]
  17. 17.
    M.A. Leontovich, Zh. Eksp. Teor. Fiz. 8(7), 844 (1938) zbMATHGoogle Scholar
  18. 18.
    Yu.L. Klimontovich, Sov. Phys. Usp. 26, 366 (1983) ADSCrossRefGoogle Scholar
  19. 19.
    R. Kirschner, L.N. Lipatov, L. Szymanowski, Nucl. Phys. B 425, 579 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    L.N. Lipatov, Nucl. Phys. B 452, 369 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    I. Balitsky, Nucl. Phys. B 463, 99 (1996) ADSCrossRefGoogle Scholar
  22. 22.
    E.N. Antonov, L.N. Lipatov, E.A. Kuraev, I.O. Cherednikov, Nucl. Phys. B 721, 111 (2005) MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    M.A. Braun, L.N. Lipatov, M.Y. Salykin, M.I. Vyazovsky, Eur. Phys. J. C 71, 1639 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    S. Pfalzner, An introduction to inertial confinement fusion. Taylor and Francis (in press) Google Scholar
  25. 25.
    L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976) [Yad. Fiz. 23, 642 (1976)] Google Scholar
  26. 26.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977) [Zh. Eksp. Teor. Fiz. 72, 377 (1977)] MathSciNetADSGoogle Scholar
  27. 27.
    I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978) [Yad. Fiz. 28, 1597 (1978)] Google Scholar
  28. 28.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge) Google Scholar
  29. 29.
    D.M. Gass, J. Chem. Phys. 54, 1898 (1971) ADSCrossRefGoogle Scholar
  30. 30.
    M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rep. 227, 321 (1993) ADSCrossRefGoogle Scholar
  31. 31.
    A. Wiranata, M. Prakash, Phys. Rev. C 85, 054908 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    P. Gaspard, J. Lutsko, Phys. Rev. E 70, 026306 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    L.P. Csernai, Introduction to Relativistic Heavy Ion Collisions (Wiley, Chichester, 1994) Google Scholar
  34. 34.
    D. Kharzeev, K. Tuchin, J. High Energy Phys. 0809, 093 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    E. Levin, Heavy Ion Phys. 8, 265 (1998) ADSGoogle Scholar
  36. 36.
    Yu.L. Klimontovich, Sov. Phys. Usp. 167, 23 (1997) CrossRefGoogle Scholar
  37. 37.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 1. Course Theoretical Physics, vol. 5 Google Scholar
  38. 38.
    D. Teaney, Phys. Rev. C 68, 034913 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    S. Bondarenko, E. Levin, J. Nyiri, Eur. Phys. J. C 25, 277 (2002) ADSGoogle Scholar
  40. 40.
    G. Kelbg, Ann. Phys. 7, 12 (1963) Google Scholar
  41. 41.
    V.V. Dixit, Mod. Phys. Lett. A 5, 227 (1990) ADSCrossRefGoogle Scholar
  42. 42.
    K. Dusling, C. Young, arXiv:0707.2068 [nucl-th]
  43. 43.
    C. Beck, arXiv:0705.3832 [cond-mat.stat-mech]
  44. 44.
    C. Beck, Eur. Phys. J. A 40, 267 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    S. Ichimaru, H. Iyetomi, S. Tanaka, Phys. Rep. 149(2–3), 91 (1987) ADSCrossRefGoogle Scholar
  46. 46.
    R.C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley, Reading, 1990) Google Scholar
  47. 47.
    S. Bondarenko, K. Komoshvili, Modeling of changes in the Debye length for the collision processes at high energies (in preparation) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Ariel University Center of SamariaArielIsrael

Personalised recommendations