Advertisement

Jet substructure with analytical methods

  • Mrinal Dasgupta
  • Alessandro Fregoso
  • Simone MarzaniEmail author
  • Alexander Powling
Regular Article - Theoretical Physics

Abstract

We consider the mass distribution of QCD jets after the application of jet-substructure methods, specifically the mass-drop tagger, pruning, trimming and their variants. In contrast to most current studies employing Monte Carlo methods, we carry out analytical calculations at the next-to-leading order level, which are sufficient to extract the dominant logarithmic behaviour for each technique, and compare our findings to exact fixed-order results. Our results should ultimately lead to a better understanding of these jet-substructure methods which in turn will influence the development of future substructure tools for LHC phenomenology.

Keywords

Soft Gluon Double Logarithm Substructure Method Cluster Logarithm Parent Gluon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Gavin Salam for several useful comments and discussions throughout the course of this work. One of us (MD) would like to thank the IPPP Durham for hospitality during part of this work. AF acknowledges useful discussions with Mike Seymour on Event2 and related topics. AF is supported by an EPSRC studentship. This work is supported by the UK’s STFC.

References

  1. 1.
    A. Abdesselam et al., Eur. Phys. J. C 71, 1661 (2011). arXiv:1012.5412 [hep-ph] ADSCrossRefGoogle Scholar
  2. 2.
    A. Altheimer et al., J. Phys. G 39, 063001 (2012). arXiv:1201.0008 [hep-ph] ADSCrossRefGoogle Scholar
  3. 3.
    M.H. Seymour, Z. Phys. C 62, 127 (1994) ADSCrossRefGoogle Scholar
  4. 4.
    M. Rubin, J. High Energy Phys. 1005, 005 (2010). arXiv:1002.4557 [hep-ph] ADSCrossRefGoogle Scholar
  5. 5.
    M. Field, G. Gur-Ari, D.A. Kosower, L. Mannelli, G. Perez, arXiv:1212.2106 [hep-ph]
  6. 6.
    A.J. Larkoski, G.P. Salam, J. Thaler, arXiv:1305.0007 [hep-ph]
  7. 7.
    J.R. Walsh, S. Zuberi, arXiv:1110.5333 [hep-ph]
  8. 8.
    I. Feige, M.D. Schwartz, I.W. Stewart, J. Thaler, Phys. Rev. Lett. 109, 092001 (2012). arXiv:1204.3898 [hep-ph] ADSCrossRefGoogle Scholar
  9. 9.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1205, 128 (2012). arXiv:1203.4606 [hep-ex] ADSCrossRefGoogle Scholar
  10. 10.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 072006 (2012). arXiv:1206.5369 [hep-ex] ADSCrossRefGoogle Scholar
  11. 11.
    G. Aad et al. (ATLAS Collaboration), arXiv:1306.4945 [hep-ex]
  12. 12.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1305, 090 (2013). arXiv:1303.4811 [hep-ex] ADSCrossRefGoogle Scholar
  13. 13.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1301, 116 (2013). arXiv:1211.2202 [hep-ex] ADSCrossRefGoogle Scholar
  14. 14.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1209, 041 (2012). arXiv:1207.2409 [hep-ex] ADSCrossRefGoogle Scholar
  15. 15.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1212, 086 (2012). arXiv:1210.4813 [hep-ex] ADSCrossRefGoogle Scholar
  16. 16.
    G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 73, 2263 (2013). arXiv:1210.4826 [hep-ex] ADSCrossRefGoogle Scholar
  17. 17.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1209, 029 (2012). arXiv:1204.2488 [hep-ex] ADSCrossRefGoogle Scholar
  18. 18.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1212, 015 (2012). arXiv:1209.4397 [hep-ex] ADSCrossRefGoogle Scholar
  19. 19.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1212.1910 [hep-ex]
  20. 20.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, Phys. Rev. D 80, 051501 (2009). arXiv:0903.5081 [hep-ph] ADSCrossRefGoogle Scholar
  22. 22.
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, Phys. Rev. D 81, 094023 (2010). arXiv:0912.0033 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    D. Krohn, J. Thaler, L.-T. Wang, J. High Energy Phys. 1002, 084 (2010). arXiv:0912.1342 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    D.E. Soper, M. Spannowsky, J. High Energy Phys. 1008, 029 (2010). arXiv:1005.0417 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    P. Quiroga-Arias, S. Sapeta, arXiv:1209.2858 [hep-ph]
  26. 26.
    P. Richardson, D. Winn, Eur. Phys. J. C 72, 2178 (2012). arXiv:1207.0380 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    A. Banfi, M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, J. High Energy Phys. 1008, 064 (2010). arXiv:1004.3483 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, M. Spannowsky, J. High Energy Phys. 1210, 126 (2012). arXiv:1207.1640 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    Y.-T. Chien, R. Kelley, M.D. Schwartz, H.X. Zhu, Phys. Rev. D 87, 014010 (2013). arXiv:1208.0010 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann, W.J. Waalewijn, arXiv:1302.0846 [hep-ph]
  31. 31.
    M. Dasgupta, G.P. Salam, Phys. Lett. B 512, 323 (2001). hep-ph/0104277 ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Dasgupta, G.P. Salam, J. High Energy Phys. 0203, 017 (2002). hep-ph/0203009 ADSCrossRefGoogle Scholar
  33. 33.
    R.B. Appleby, M.H. Seymour, J. High Energy Phys. 0212, 063 (2002). hep-ph/0211426 ADSCrossRefGoogle Scholar
  34. 34.
    A. Banfi, M. Dasgupta, Phys. Lett. B 628, 49 (2005). hep-ph/0508159 ADSCrossRefGoogle Scholar
  35. 35.
    Y. Delenda, R. Appleby, M. Dasgupta, A. Banfi, J. High Energy Phys. 0612, 044 (2006). hep-ph/0610242 ADSCrossRefGoogle Scholar
  36. 36.
    M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph] ADSCrossRefGoogle Scholar
  37. 37.
    Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). hep-ph/9707323 ADSCrossRefGoogle Scholar
  38. 38.
    M. Wobisch, T. Wengler, in Hamburg 1998/1999, Monte Carlo Generators for HERA Physics (1999), pp. 270–279. hep-ph/9907280 Google Scholar
  39. 39.
    Z. Nagy, Phys. Rev. D 68, 094002 (2003). hep-ph/0307268 ADSCrossRefGoogle Scholar
  40. 40.
    M. Dasgupta, A. Fregoso, S. Marzani, G.P. Salam, J. High Energy Phys. 1309, 029 (2013). arXiv:1307.0007 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    S. Catani, M.H. Seymour, Phys. Lett. B 378, 287 (1996). hep-ph/9602277 ADSCrossRefGoogle Scholar
  42. 42.
    M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). hep-ph/0512210 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Mrinal Dasgupta
    • 1
  • Alessandro Fregoso
    • 2
  • Simone Marzani
    • 3
    Email author
  • Alexander Powling
    • 2
  1. 1.Consortium for Fundamental Physics, School of Physics & AstronomyUniversity of ManchesterManchesterUK
  2. 2.School of Physics & AstronomyUniversity of ManchesterManchesterUK
  3. 3.Institute for Particle Physics PhenomenologyDurham UniversityDurhamUK

Personalised recommendations