Advertisement

Cosmological horizon entropy and generalized second law for flat Friedmann universe

  • Titus K. MathewEmail author
  • Aiswarya R
  • Vidya K. Soman
Regular Article - Theoretical Physics

Abstract

We investigate the generalized second law (GSL) and the constraints imposed by it for two types of Friedmann universes. The first one is the Friedmann universe with radiation and a positive cosmological constant, and the second one consists of non-relativistic matter and a positive cosmological constant. The time evolution of the event horizon entropy and the entropy of the contents within the horizon are studied by obtaining the Hubble parameter. It is shown that the GSL constrains the temperature of both the radiation and matter of the Friedmann universe. It is also shown that, even though the net entropy of the radiation (or matter) is decreasing at sufficiently large times as the universe expands, it exhibits an increase during the early times when the universe is decelerating. That is, the entropy of the radiation within the comoving volume is decreasing only when the universe is undergoing an accelerated expansion.

Keywords

Entropy Black Hole Cosmological Constant Event Horizon Hubble Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the reviewer for giving useful comments to improve this work.

References

  1. 1.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    T. Padmanabhan, Phys. Rep. 49, 406 (2005) MathSciNetGoogle Scholar
  5. 5.
    T. Padmanabhan, Phys. Rep. 73, 046901 (2010) CrossRefGoogle Scholar
  6. 6.
    T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995) MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    R.G. Cai, Phys. Lett. B 525, 331 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    R.G. Cai, S.P. Kim, J. High Energy Phys. 0502, 050 (2005) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    P.C.W. Davies, Class. Quantum Gravity 4, L225 (1987) ADSCrossRefGoogle Scholar
  11. 11.
    T.M. Davies, P.C.W. Davies, C.H. Lineweaver, Class. Quantum Gravity 20, 2753 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    P.C.W. Davies, Class. Quantum Gravity 5, 1349 (1988) ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    R. Amanullah et al., Astrophys. J. 716, 712 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Pollock, T.P. Singh, Class. Quantum Gravity 6, 901 (1989) MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Brustein, Phys. Rev. Lett. 84, 2072 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    D. Pavan, Class. Quantum Gravity 7, 487 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    R. Bousso, Phys. Rev. D 71, 064024 (2005) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    B. Wang, Y. Gong, E. Abdalla, Phys. Rev. D 74, 083520 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    K. Karami, A. Abdomaleki, J. Cosmol. Astropart. Phys. 04, 007 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    R. Ghosh, A. Pasqua, S. Chattopadhyay, Eur. Phys. J. Plus 128, 12 (2013) CrossRefGoogle Scholar
  21. 21.
    N. Mazunder, S. Chakraborthy, Eur. Phys. J. C 70, 329 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    U. Debnath, S. Chattopadhyay, I. Hussain, M. Jamil, R. Myrzakulov, Eur. Phys. J. C 72, 1875 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    S. del Campo, R. Herrera, D. Pavon, Phys. Lett. B 707, 8 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    A. Frolov, L. Kofman, J. Cosmol. Astropart. Phys. 0305, 009 (2003) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973) CrossRefzbMATHGoogle Scholar
  26. 26.
    E. Komatsu et al. (WMAP Collaborations), Astrophys. J. Suppl. Ser. 192, 18 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    C.L. Bennet et al., Astrophys. J. Lett. 464, L1 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsCochin University of Science and TechnologyKochiIndia

Personalised recommendations