Advertisement

A dynamical soft-wall holographic QCD model for chiral symmetry breaking and linear confinement

  • Danning LiEmail author
  • Mei Huang
  • Qi-Shu Yan
Regular Article - Theoretical Physics

Abstract

A self-consistent dynamical soft-wall holographic QCD model is formulated in the framework of graviton–dilaton–scalar system, which can realize both chiral symmetry breaking and confinement, two of the most important phenomena of QCD. The scalar field corresponds to the quark–antiquark condensate and can explain the property of chiral dynamics. The quadratic dilaton background field ϕ=μ 2 z 2 as in the original soft-wall model can accommodate two aspects in the manifestation of color confinement, i.e. the Regge spectra of hadrons and the linear potential between quarks. It is observed that both the slope of the Regge spectra and the string tension of the quark potential are proportional to μ 2. More interesting observation is that the best fitted value of μ is around the dynamical gluon mass extracted from lattice data. It is also shown that the negative dilaton background ϕ=−μ 2 z 2 can be safely excluded in this framework.

Keywords

String Tension Chiral Symmetry Breaking Regge Trajectory Massless Mode Hadron Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank valuable discussions with P. Colangelo, M. Chernodub, M. Frasca, S. He, K. Kondo, C. Liu, Y.X. Liu, M. Ruggieri, A. Vairo, J.J. Wu, J.B. Wu and F.K. Xu. This work is supported by the NSFC under Grant Nos. 11175251 and 11275213, DFG and NSFC (CRC 110), CAS key project KJCX2-EW-N01, K.C. Wong Education Foundation, and Youth Innovation Promotion Association of CAS.

References

  1. 1.
    Y. Nambu, Phys. Rev. 117, 648–663 (1960) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    G. Veneziano, Nuovo Cimento A 57, 190 (1968) ADSCrossRefGoogle Scholar
  3. 3.
    P.D.B. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge, 1975) Google Scholar
  4. 4.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] MathSciNetADSzbMATHGoogle Scholar
  5. 5.
    E. Witten, Adv. Theor. Math. Phys. 2, 253–291 (1998) MathSciNetADSzbMATHGoogle Scholar
  6. 6.
    O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    O. Aharony, arXiv:hep-th/0212193
  8. 8.
    J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Eur. Phys. J. A 35, 81 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    G.F. de Teramond, S.J. Brodsky, arXiv:1203.4025 [hep-ph]
  10. 10.
    Y. Kim, I.J. Shin, T. Tsukioka, arXiv:1205.4852 [hep-ph]
  11. 11.
    A. Adams, L.D. Carr, T. Schaefer, P. Steinberg, J.E. Thomas, arXiv:1205.5180 [hep-th]
  12. 12.
    J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Phys. Rev. D 78, 055009 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    T. Gherghetta, J.I. Kapusta, T.M. Kelley, Phys. Rev. D 79, 076003 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    T.M. Kelley, S.P. Bartz, J.I. Kapusta, Phys. Rev. D 83, 016002 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    T.M. Kelley, arXiv:1108.0653 [hep-ph]
  18. 18.
    Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie, Y.-B. Yang, Phys. Rev. D 81, 014024 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    Y.-Q. Sui, Y.-L. Wu, Y.-B. Yang, Phys. Rev. D 83, 065030 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    S.J. Brodsky, G.F. de Teramond, Phys. Lett. B 582, 211 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    T. Branz, T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 82, 074022 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998) MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    O. Andreev, V.I. Zakharov, Phys. Rev. D 74, 025023 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    H.J. Pirner, B. Galow, Phys. Lett. B 679, 51 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    S. He, M. Huang, Q.S. Yan, Phys. Rev. D 83, 045034 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    M. Mia, K. Dasgupta, C. Gale, S. Jeon, Phys. Rev. D 82, 026004 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    M. Mia, K. Dasgupta, C. Gale, S. Jeon, Phys. Lett. B 694, 460 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    F. Zuo, Phys. Rev. D 82, 086011 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    G.F. de Teramond, S.J. Brodsky, arXiv:0909.3900 [hep-ph]
  30. 30.
    T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 85, 076003 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    A. Karch, E. Katz, D.T. Son, M.A. Stephanov, J. High Energy Phys. 1104, 066 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    C. Csaki, M. Reece, J. High Energy Phys. 0705, 062 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    U. Gursoy, E. Kiritsis, J. High Energy Phys. 0802, 032 (2008) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    U. Gursoy, E. Kiritsis, F. Nitti, J. High Energy Phys. 0802, 019 (2008) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    S.S. Gubser, A. Nellore, Phys. Rev. D 78, 086007 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    D. Li, S. He, M. Huang, Q.-S. Yan, J. High Energy Phys. 1109, 041 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    F.V. Gubarev, V.I. Zakharov, Phys. Lett. B 501, 28 (2001) ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    F.V. Gubarev, L. Stodolsky, V.I. Zakharov, Phys. Rev. Lett. 86, 2220–2222 (2001) ADSCrossRefGoogle Scholar
  39. 39.
    K.I. Kondo, Phys. Lett. B 514, 335 (2001) ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    S.S. Afonin, Int. J. Mod. Phys. A 26, 3615 (2011) ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    B. Batell, T. Gherghetta, Phys. Rev. D 78, 026002 (2008) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    J.I. Kapusta, T. Springer, Phys. Rev. D 81, 086009 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    T.M. Kelley, arXiv:1107.0931 [hep-ph]
  44. 44.
    C. Amsler et al. (Particle Data Group Collaboration), Phys. Lett. B 667, 1 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    W. de Paula, T. Frederico, H. Forkel, M. Beyer, Phys. Rev. D 79, 075019 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 21, 203 (1980) ADSCrossRefGoogle Scholar
  47. 47.
    D. Binosi, in PoS LC, vol. 2010 (2010), p. 020 Google Scholar
  48. 48.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 78, 025010 (2008) ADSCrossRefGoogle Scholar
  49. 49.
    A. Cucchieri, T. Mendes, in PoS QCD, vol. TNT09 (2009), p. 026 Google Scholar
  50. 50.
    A. Cucchieri, T. Mendes, in PoS LAT, vol. 2007 (2007), p. 297 Google Scholar
  51. 51.
    I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, in PoS LAT, vol. 2007 (2007), p. 290 Google Scholar
  52. 52.
    J.M. Cornwall, Phys. Rev. D 26, 1453 (1982) ADSCrossRefGoogle Scholar
  53. 53.
    D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel, H. Verschelde, Phys. Rev. D 78, 065047 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingChina
  3. 3.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations