Advertisement

Thermodynamics and quasinormal modes of Park black hole in Hořava gravity

  • Jishnu SureshEmail author
  • V. C. KuriakoseEmail author
Regular Article - Theoretical Physics

Abstract

We study the quasinormal modes of the massless scalar field of Park black hole in the Hořava gravity using the third-order WKB approximation method and find that the black hole is stable against these perturbations. We compare and discuss the results with that of Schwarzschild–de Sitter black hole. Thermodynamic properties of Park black hole are investigated and the thermodynamic behavior of upper mass bound is also studied.

Keywords

Black Hole Quasinormal Mode Black Hole Horizon Sitter Black Hole Quasinormal Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank UGC, New Delhi for financial support through a major research project sanctioned to VCK. VCK also wishes to acknowledge Associateship of IUCAA, Pune, India.

References

  1. 1.
    J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973) MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S.W. Hawking, Nature 248, 30 (1974) ADSCrossRefGoogle Scholar
  4. 4.
    S.W. Hawking, Commun. Math. Phys. 43, 43 (1975) MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Perlmutter et al., Astrophys. J. 483, 565 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    P.M. Garnavich et al., Astrophys. J. 509, 74 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) MathSciNetADSzbMATHGoogle Scholar
  9. 9.
    E. Witten, hep-th/0106109
  10. 10.
    A. Strominger, J. High Energy Phys. 0111, 0341 (2011) Google Scholar
  11. 11.
    A. Strominger, J. High Energy Phys. 0111, 0491 (2011) Google Scholar
  12. 12.
    P. Hořava, Phys. Rev. D 79, 084008 (2009) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    P. Hořava, J. High Energy Phys. 03, 020 (2009) ADSGoogle Scholar
  14. 14.
    P. Hořava, Phys. Rev. Lett. 102, 161301 (2009) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    H. Lu, J. Mei, C.N. Pope, Phys. Rev. Lett. 103, 091301 (2009) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    R.G. Cai, L.M. Cao, N. Ohta, Phys. Rev. D 81, 024003 (2009) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A. Kehagias, K. Sfetsos, Phys. Lett. B 678, 123 (2009) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    H. Nastase, Phys. Lett. B 67, 123 (2009) MathSciNetGoogle Scholar
  19. 19.
    E. Kiritsis, G. Kofinas, Nucl. Phys. B 821, 467 (2009) MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. 20.
    G. Calcagni, J. High Energy Phys. 09, 112 (2009) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    M.i. Park, J. Cosmol. Astropart. Phys. 01, 001 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    S.W. Wei, Y.X. Liu, H. Guo, Europhys. Lett. 99, 20004 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    Y.S. Myung, Phys. Lett. B 684, 158 (2010) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Y.S. Myung, Phys. Lett. B 678, 127 (2009) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Y.S. Myung, Y.W. Kim, Eur. Phys. J. C 68, 265 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    N. Varghese, V.C. Kuriakose, Mod. Phys. Lett. A 26, 1645 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    N. Varghese, V.C. Kuriakose, Gen. Relativ. Gravit. 43, 2755 (2011) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. Suresh, V.C. Kuriakose, Gen. Relativ. Gravit. 45, 1877 (2013) ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    M.i. Park, J. High Energy Phys. 0909, 123 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    C.V. Vishveshwara, Nature 227, 936 (1970) ADSCrossRefGoogle Scholar
  31. 31.
    W.H. Press, Astrophys. J. 170, 105 (1971) ADSCrossRefGoogle Scholar
  32. 32.
    L.E. Simone, C.M. Will, Class. Quantum Gravity 9, 963 (1992) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    R.A. Konoplya, Phys. Lett. B 550, 117 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar
  34. 34.
    R.A. Burko, G. Khanna, Phys. Rev. D 70, 044018 (2004) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    S. Hod, Phys. Rev. D 84, 044046 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    S. Chandrasekhar, S.L. Detweiler, Proc. R. Soc. Lond. Ser. A, Math. Phys. 344, 441 (1975) ADSCrossRefGoogle Scholar
  37. 37.
    T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1999) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    G.T. Horowitz, V.E. Hubeny, Phys. Rev. D 62, 024027 (2000) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    B. Wang et al., Phys. Rev. D 70, 064025 (2004) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    S. Hod, Phys. Rev. Lett. 81, 4293 (1998) MathSciNetADSCrossRefzbMATHGoogle Scholar
  41. 41.
    O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003) ADSCrossRefGoogle Scholar
  42. 42.
    S. Iyer, Phys. Rev. D 35, 3632 (1987) ADSCrossRefGoogle Scholar
  43. 43.
    S. Iyer, C.M. Will, Phys. Rev. D 35, 3621 (1987) ADSCrossRefGoogle Scholar
  44. 44.
    B.F. Schutz, C.M. Will, Astrophys. J. Lett. 291, 33 (1985) ADSCrossRefGoogle Scholar
  45. 45.
    R.A. Konoplya, Phys. Rev. D 68, 024018 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsCochin University of Science and TechnologyCochinIndia

Personalised recommendations