Advertisement

Explaining ATLAS and CMS results within the reduced minimal 3-3-1 model

  • W. Caetano
  • C. A. de S. Pires
  • P. S. Rodrigues da Silva
  • D. Cogollo
  • Farinaldo S. QueirozEmail author
Regular Article - Theoretical Physics

Abstract

Recently the ATLAS and CMS collaborations announced the discovery of a Higgs particle with a mass of ∼125 GeV. The results are mildly consistent with the Standard Model Higgs boson. However, the combined data from these collaborations seem to point to an excess in the hγγ channel. In this work we analyze under which conditions this excess may be plausibly explained within the reduced minimal 3-3-1 model, while being consistent with \(b\overline{b}\), WW, ZZ and τ + τ channels. Moreover, we derive the properties of the heavy neutral and the doubly charged scalars predicted by the model. We then conclude that at a scale of a few TeV, this model provides a good fit to the ATLAS and CMS signal strength measurements, and therefore stands as an appealing alternative to the standard model.

Keywords

Higgs Boson Signal Strength Gauge Boson Decay Width Branching Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

WC is supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). CASP, FSQ and PSRS are supported by Conselho Nacional de Pesquisa e Desenvolvimento Científico—CNPq. The authors would like to thank Patricia Telles, Alexandre Alves and William Shepherd for useful discussions.

References

  1. 1.
    G. Aad et al. (Atlas Collaboration), Phys. Lett. B 716, 1 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    A. Alves et al., Eur. Phys. J. C 73, 2288 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    J. Chang, K. Cheung, P.-Y. Tseng, T.-C. Yuan, J. High Energy Phys. 1212, 058 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Espinosa, C. Grojean, M. Muhlleitner, M. Trott, J. High Energy Phys. 1212, 045 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    J. Cao, Z. Heng, J.M. Yang, J. Zhu, J. High Energy Phys. 1210, 079 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    A. Delgado, G. Nardini, M. Quiros, Phys. Rev. D 86, 115010 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    A. Alves, Phys. Rev. D 86, 113010 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    A. Urbano, Phys. Rev. D 87, 053003 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    Z. Chacko, R. Franceschini, R.K. Mishra, J. High Energy Phys. 1304, 015 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    E. Bertuzzo, P.A.N. Machado, R. Zukanovich Funchal, J. High Energy Phys. 1302, 086 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    M. Drees, Phys. Rev. D 86, 115018 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    A. Alves et al., Phys. Rev. D 84, 115004 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    Moriond proceeding contributions. http://moriond.in2p3.fr/QCD/2013/MorQCD13Prog.html
  15. 15.
    F. Pisano, V. Pleitez, Phys. Rev. D 46, 410 (1992) ADSCrossRefGoogle Scholar
  16. 16.
    P.H. Frampton, Phys. Rev. Lett. 69, 2889 (1992) ADSCrossRefGoogle Scholar
  17. 17.
    C.A. de S. Pires, O.P. Ravinez, Phys. Rev. D 58, 035008 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    C.A. de S. Pires, Phys. Rev. D 60, 075013 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    A.G. Dias, C.A. de S. Pires, P.S. Rodrigues da Silva, Phys. Lett. B 628, 85 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    F. Queiroz, C.A. de S. Pires, P.S. Rodrigues da Silva, Phys. Rev. D 82, 065018 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    D. Cogollo, H. Diniz, C.A. de S. Pires, P.S. Rodrigues da Silva, Mod. Phys. Lett. A 23, 3405 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    C. Kelso, C.A. de S. Pires, S. Profumo, F.S. Queiroz, P.S. Rodrigues da Silva. arXiv:1308.6630
  23. 23.
    S. Profumo, F.S. Queiroz. arXiv:1307.7802
  24. 24.
    J.D. Ruiz-Alvarez, C.A. de S. Pires, F.S. Queiroz, D. Restrepo, P.S. Rodrigues da Silva, Phys. Rev. D 86, 075011 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    J.K. Mizukoshi, C.A. de S. Pires, F.S. Queiroz, P.S. Rodrigues da Silva, Phys. Rev. D 83, 065024 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    C.A. de S. Pires, F.S. Queiroz, P.S. Rodrigues da Silva, Phys. Rev. D 82, 105014 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    A.C.B. Machado, J.C. Montero, V. Pleitez. arXiv:1305.1921
  28. 28.
    J.A. Rodriguez, M. Sher, Phys. Rev. D 70, 117702 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    C. Promberger, S. Schatt, F. Schwab, Phys. Rev. D 75, 115007 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    R.H. Benavides, Y. Giraldo, W.A. Ponce, Phys. Rev. D 80, 113009 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    D. Cogollo et al., Eur. Phys. J. C 72, 2029 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    E. Ramirez Barreto, Y.A. Coutinho, J. Sa Borges, Phys. Lett. B 689, 36–41 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    E. Ramirez Barreto, Y.A. Coutinho, J. Sa Borges, Phys. Rev. D 83, 075001 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    A. Alves, E. Ramirez Barreto, A.G. Dias, Phys. Rev. D 84, 075013 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Giraldo, W.A. Ponce, Eur. Phys. J. C 71, 1693 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    D.T. Huong, L.T. Hue, M.C. Rodriguez, H.N. Long, Nucl. Phys. B 870, 293–322 (2013) MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. 37.
    A. Doff, A.A. Natale, Int. J. Mod. Phys. A 27, 1250156 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    P.V. Dong, T.D. Tham, H.T. Hung. arXiv:1305.0369
  39. 39.
    J.G. Ferreira Jr., P.R.D. Pinheiro, C.A. de S. Pires, P.S. Rodrigues da Silva, Phys. Rev. D 84, 095019 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    V.T.N. Huyen, T.T. Lam, H.N. Long, V.Q. Phong. arXiv:1210.5833 (for some phenomenology of this model)
  41. 41.
    D.T. Huong, L.T. Hue, M.C. Rodriguez, H.N. Long, Nucl. Phys. B 870, 293 (2013) (for the supersymmetric version of this model) MathSciNetADSCrossRefzbMATHGoogle Scholar
  42. 42.
    A.G. Dias, R. Martinez, V. Pleitez, Eur. Phys. J. C 39, 101 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    A.G. Dias, V. Pleitez, Phys. Rev. D 80, 056007 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    T. Rizzo, Phys. Rev. D 22, 722 (1980) MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    J. Ellis, M.K. Gaillard, D. Nanopoulos, Nucl. Phys. B 106, 292 (1976) ADSGoogle Scholar
  46. 46.
    A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, M.A. Shifman, Sov. J. Nucl. Phys. 30, 711 (1979) Google Scholar
  47. 47.
    V. Barger, M. Ishida, W.-Y. Keung, Phys. Rev. Lett. 108, 261801 (2012) ADSCrossRefGoogle Scholar
  48. 48.
    T. Aaltonen et al. (CDF Collaboration, D0 Collaboration), Phys. Rev. Lett. 109, 071804 (2012) ADSCrossRefGoogle Scholar
  49. 49.
    J. Ellis, T. You. arXiv:1303.3879
  50. 50.
    W. Emam, S. Khalil, Eur. Phys. J. C 52, 625 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    CMS Collaboration, Eur. Phys. J. C 72, 2189 (2012) ADSCrossRefGoogle Scholar
  52. 52.
    P.H. Frampton, M. Harada, Phys. Rev. D 58, 095013 (1998) ADSCrossRefGoogle Scholar
  53. 53.
    H.N. Long, T. Inami, Phys. Rev. D 61, 075002 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • W. Caetano
    • 1
  • C. A. de S. Pires
    • 1
  • P. S. Rodrigues da Silva
    • 1
  • D. Cogollo
    • 2
  • Farinaldo S. Queiroz
    • 3
    Email author
  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrasil
  2. 2.Departamento de FísicaUniversidade Federal de Campina GrandeCampina GrandeBrasil
  3. 3.Santa Cruz Institute for Particle PhysicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations