Advertisement

Resonant scattering of light in a near-black-hole metric

  • Y. V. Stadnik
  • G. H. GosselEmail author
  • V. V. Flambaum
  • J. C. Berengut
Regular Article - Theoretical Physics

Abstract

We show that low-energy photon scattering from a body with radius R slightly larger than its Schwarzschild radius r s resembles black-hole absorption. This absorption occurs via capture resulting in one of the many long-lived, densely packed resonances that populate the continuum. The lifetimes and density of these meta-stable states tend to infinity in the limit r s R. We determine the energy-averaged cross section for particle capture into these resonances and show that it is equal to the absorption cross section for a Schwarzschild black hole. Thus a non-singular static metric may trap photons for arbitrarily long times, making it appear completely ‘black’ before the actual formation of a black hole.

Keywords

Absorption Cross Section Resonance Width Exterior Region Coulomb Phase Shift Small Energy Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank G.F. Gribakin for useful discussions. This work is supported by the Australian Research Council.

References

  1. 1.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 3rd edn. (Butterworth-Heinemann, Oxford, 1977) Google Scholar
  2. 2.
    R.A. Matzner, Scattering of massless scalar waves by a Schwarzschild “Singularity”. J. Math. Phys. 9, 163 (1968) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A.A. Starobinskii, Amplification of waves during reflection from a rotating black hole. Zh. Eksp. Teor. Fiz. 64, 48 (1973). [Sov. Phys. JETP 37, 28 (1973)] ADSGoogle Scholar
  4. 4.
    A.A. Starobinskii, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Zh. Eksp. Teor. Fiz. 65, 3 (1973). [Sov. Phys. JETP 38, 1 (1973)] ADSGoogle Scholar
  5. 5.
    W.G. Unruh, Absorption cross section of small black holes. Phys. Rev. D 14, 3251 (1976). Thesis, Princeton University (1971) (unpublished) ADSCrossRefGoogle Scholar
  6. 6.
    N. Sanchez, Absorption and emission spectra of a Schwarzschild black hole. Phys. Rev. D 18, 1030 (1978) ADSCrossRefGoogle Scholar
  7. 7.
    S.R. Das, G. Gibbons, S.D. Mathur, Universality of low energy absorption cross sections for black holes. Phys. Rev. Lett. 78, 417 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    L.C.B. Crispino, S.R. Dolan, E.S. Oliveira, Electromagnetic wave scattering by Schwarzschild black holes. Phys. Rev. Lett. 102, 231103 (2009) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Y. Décanini, G. Esposito-Farèse, A. Folacci, Universality of high-energy absorption cross sections for black holes. Phys. Rev. D 83, 044032 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    R. Fabbri, Scattering and absorption of electromagnetic waves by a Schwarzschild black hole. Phys. Rev. D 12, 933 (1975) ADSCrossRefGoogle Scholar
  11. 11.
    P. Kanti, J. March-Russell, Calculable corrections to brane black hole decay. II. Greybody factors for spin 1/2 and 1. Phys. Rev. D 67, 104019 (2003) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    V.V. Flambaum, G.H. Gossel, G.F. Gribakin, Dense spectrum of resonances and particle capture in a near-black-hole metric. Phys. Rev. D 85, 084027 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    J.A. Wheeler, Geons. Phys. Rev. 97, 511 (1955) MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. (National Bureau of Standards, Gaithersburg, 1972) zbMATHGoogle Scholar
  15. 15.
    P.S. Florides, A new interior Schwarzschild solution. Proc. R. Soc. Lond. A 337, 529 (1974) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    M. Soffel, B. Müller, W. Greiner, Particles in a stationary spherically symmetric gravitational field. J. Phys. A 10, 551 (1977) ADSCrossRefGoogle Scholar
  17. 17.
    Mathematica, Version 7.0 (Wolfram Research, Champaign, 2008) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Y. V. Stadnik
    • 1
  • G. H. Gossel
    • 1
    Email author
  • V. V. Flambaum
    • 1
  • J. C. Berengut
    • 1
  1. 1.School of PhysicsUniversity of New South WalesSydneyAustralia

Personalised recommendations