Advertisement

The two-loop infrared structure of amplitudes with mixed gauge groups

  • William B. KilgoreEmail author
Regular Article - Theoretical Physics

Abstract

The infrared structure of (multi-loop) scattering amplitudes is determined entirely by the identities of the external particles participating in the scattering. The two-loop infrared structure of pure QCD amplitudes has been known for some time. By computing the two-loop amplitudes for \(\overline{f}f\longrightarrow X\) and \(\overline{f}f\longrightarrow V_{1}V_{2}\) scattering in an SU(NSU(MU(1) gauge theory, I determine the anomalous dimensions which govern the infrared structure for any massless two-loop amplitude.

Keywords

Gauge Group Gauge Boson Gauge Coupling Anomalous Dimension Soft Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

References

  1. 1.
    S. Catani, Phys. Lett. B 427, 161 (1998). hep-ph/9802439 ADSCrossRefGoogle Scholar
  2. 2.
    G. Sterman, M.E. Tejeda-Yeomans, Phys. Lett. B 552, 48 (2003). hep-ph/0210130 ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Aybat, L.J. Dixon, G.F. Sterman, Phys. Rev. Lett. 97, 072001 (2006). hep-ph/0606254 ADSCrossRefGoogle Scholar
  4. 4.
    S. Aybat, L.J. Dixon, G.F. Sterman, Phys. Rev. D 74, 074004 (2006). hep-ph/0607309 ADSCrossRefGoogle Scholar
  5. 5.
    A. Mitov, G.F. Sterman, I. Sung, Phys. Rev. D 79, 094015 (2009). 0903.3241 ADSCrossRefGoogle Scholar
  6. 6.
    T. Becher, M. Neubert, Phys. Rev. Lett. 102, 162001 (2009). 0901.0722 ADSCrossRefGoogle Scholar
  7. 7.
    E. Gardi, L. Magnea, J. High Energy Phys. 0903, 079 (2009). 0901.1091 ADSCrossRefGoogle Scholar
  8. 8.
    T. Becher, M. Neubert, J. High Energy Phys. 0906, 081 (2009). 0903.1126 MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    T. Becher, M. Neubert, Phys. Rev. D 79, 125004 (2009). 0904.1021 ADSCrossRefGoogle Scholar
  10. 10.
    E. Gardi, L. Magnea, Nuovo Cimento C 32(5–6), 137 (2009). 0908.3273 Google Scholar
  11. 11.
    L.J. Dixon, E. Gardi, L. Magnea, J. High Energy Phys. 1002, 081 (2010). 0910.3653 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A. Mitov, G.F. Sterman, I. Sung, Phys. Rev. D 82, 034020 (2010). 1005.4646 ADSCrossRefGoogle Scholar
  13. 13.
    Z. Bern, L.J. Dixon, A. Ghinculov, Phys. Rev. D 63, 053007 (2001). hep-ph/0010075 ADSCrossRefGoogle Scholar
  14. 14.
    C. Anastasiou, E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans, Nucl. Phys. B 601, 318 (2001). hep-ph/0010212 ADSCrossRefGoogle Scholar
  15. 15.
    C. Anastasiou, E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans, Nucl. Phys. B 601, 341 (2001). hep-ph/0011094 ADSCrossRefGoogle Scholar
  16. 16.
    C. Anastasiou, E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans, Nucl. Phys. B 605, 486 (2001). hep-ph/0101304 ADSCrossRefGoogle Scholar
  17. 17.
    E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans, Nucl. Phys. B 605, 467 (2001). hep-ph/0102201 ADSCrossRefGoogle Scholar
  18. 18.
    L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis, E. Remiddi, hep-ph/0112081 (2001)
  19. 19.
    C. Anastasiou, E. Glover, M. Tejeda-Yeomans, Nucl. Phys. B 629, 255 (2002). hep-ph/0201274 ADSCrossRefGoogle Scholar
  20. 20.
    E.N. Glover, M. Tejeda-Yeomans, J. High Energy Phys. 0306, 033 (2003). hep-ph/0304169 ADSCrossRefGoogle Scholar
  21. 21.
    W.B. Kilgore, C. Sturm, Phys. Rev. D 85, 033005 (2012). 1107.4798 ADSCrossRefGoogle Scholar
  22. 22.
    J. Collins, Renormalization (Cambridge University Press, Cambridge, 1984) CrossRefzbMATHGoogle Scholar
  23. 23.
    S. Catani, M.H. Seymour, Phys. Lett. B 378, 287 (1996). hep-ph/9602277 ADSCrossRefGoogle Scholar
  24. 24.
    S. Catani, M.H. Seymour, Nucl. Phys. B 485, 291 (1997). hep-ph/9605323 ADSCrossRefGoogle Scholar
  25. 25.
    R.J. Gonsalves, Phys. Rev. D 28, 1542 (1983) ADSCrossRefGoogle Scholar
  26. 26.
    G. Kramer, B. Lampe, Z. Phys. C 34, 497 (1987) ADSCrossRefGoogle Scholar
  27. 27.
    T. Matsuura, W.L. van Neerven, Z. Phys. C 38, 623 (1988) ADSCrossRefGoogle Scholar
  28. 28.
    T. Matsuura, S.C. van der Marck, W.L. van Neerven, Nucl. Phys. B 319, 570 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    R.V. Harlander, Phys. Lett. B 492, 74 (2000). hep-ph/0007289 ADSCrossRefGoogle Scholar
  30. 30.
    S. Moch, J. Vermaseren, A. Vogt, J. High Energy Phys. 0508, 049 (2005). hep-ph/0507039 ADSCrossRefGoogle Scholar
  31. 31.
    S. Moch, J. Vermaseren, A. Vogt, Phys. Lett. B 625, 245 (2005). hep-ph/0508055 ADSCrossRefGoogle Scholar
  32. 32.
    P. Nogueira, J. Comput. Phys. 105, 279 (1993) MathSciNetADSCrossRefzbMATHGoogle Scholar
  33. 33.
    J.A.M. Vermaseren Report No. NIKHEF-00-0032. math-ph/0010025 (2000)
  34. 34.
    K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981) ADSCrossRefGoogle Scholar
  35. 35.
    S. Laporta, E. Remiddi, Phys. Lett. B 379, 283 (1996). hep-ph/9602417 ADSCrossRefGoogle Scholar
  36. 36.
    S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000). hep-ph/0102033 MathSciNetADSzbMATHGoogle Scholar
  37. 37.
    A. von Manteuffel, C. Studerus, 1201.4330 (2012)
  38. 38.
    V.A. Smirnov, Phys. Lett. B 460, 397 (1999). hep-ph/9905323 ADSCrossRefGoogle Scholar
  39. 39.
    V.A. Smirnov, O.L. Veretin, Nucl. Phys. B 566, 469 (2000). hep-ph/9907385 MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. 40.
    J.B. Tausk, Phys. Lett. B 469, 225 (1999). hep-ph/9909506 MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Physics DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations