Advertisement

On explicit thermodynamic functions and extremal limits of Myers–Perry black holes

  • Jan E. Åman
  • Narit PidokrajtEmail author
Regular Article - Theoretical Physics

Abstract

We study thermodynamic geometries of Myers–Perry (MP) black holes with arbitrary number of angular momenta. This geometric method allows us to visualize thermodynamic state spaces of the MP black holes as wedges embedded in a Minkowski-like parameter space. The opening angles of these wedges are uniquely determined by the number of spacetime dimensions d, and the number of angular momenta associated with the MP black holes, n. The geometric structure captures extremal limits of the MP black holes, and hence serves as a method for identifying the black hole’s extremal limit. We propose that classification of the MP black hole solutions should based on these uncovered structures. In order for the ultraspinning regime to exist, at least one of the angular momenta has to be set to zero. Finally, we conjecture that the membrane phase of ultraspinning MP black holes is reached at the minimum temperature in the case where 2n<d−3 based on the thermodynamic curvature obtained.

Keywords

Black Hole Black Hole Solution Black Ring Kerr Black Hole Extremal Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Narit Pidokrajt acknowledges the KoF group, Fysikum, Stockholms Universitet for the warm hospitality, in particular to Hans Hansson for lending him a nice computer screen. NP would also like to thank the Royal Swedish Academy of Sciences (KVA) for supporting this project through the grant FOA10V-116. We kindly thank Ingemar Bengtsson for his enlightening and many useful comments, and acknowledge Gary Gibbons for giving us some useful information. NP would like to thank Roberto Emparan for stimulating discussions on MP black holes with equal spins while he was a visitor in Barcelona.

References

  1. 1.
    R.C. Myers, M.J. Perry, Ann. Phys. (N.Y.) 172, 304 (1986) MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Emparan, H.S. Reall, Living Rev. Relativ. 11, 6 (2008). arXiv:0801.3471 [hep-th] ADSGoogle Scholar
  3. 3.
    R. Emparan, H.S. Reall, Phys. Rev. Lett. 88, 101101 (2002). arXiv:hep-th/0110260 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    H. Elvang, P. Figueras, J. High Energy Phys. 0705, 050 (2007). arXiv:hep-th/0701035 MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    H. Iguchi, T. Mishima, Phys. Rev. D 75, 064018 (2007). arXiv:hep-th/0701043 [Erratum-ibid. D 78, 069903 (2008)] MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J. Evslin, C. Krishnan, Class. Quantum Gravity 26, 125018 (2009). arXiv:0706.1231 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    K. Izumi, Prog. Theor. Phys. 119, 757 (2008). arXiv:0712.0902 [hep-th] ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Elvang, M.J. Rodriguez, J. High Energy Phys. 0804, 045 (2008). arXiv:0712.2425 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    R. Gregory, R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993). arXiv:hep-th/9301052 MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    T. Harmark, V. Niarchos, N.A. Obers, Class. Quantum Gravity 24, R1 (2007). arXiv:hep-th/0701022 MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    M.J. Rodríguez, in Proc. of the Twelfth Marcel Grossmann Meeting on General Relativity (World Scientific, Singapore, 2012), p. 523. arXiv:1003.2411 CrossRefGoogle Scholar
  12. 12.
    R. Emparan, R.C. Myers, J. High Energy Phys. 0309, 025 (2003). arXiv:hep-th/0308056 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers, M.J. Rodríguez, J. High Energy Phys. 0710, 110 (2007). arXiv:0708.2181 [hep-th] ADSCrossRefGoogle Scholar
  14. 14.
    K. Murata, J. Soda, Prog. Theor. Phys. 120, 561 (2008). arXiv:0803.1371 [hep-th] ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos, R. Emparan, Phys. Rev. D 80, 111701 (2009). arXiv:0907.2248 [hep-th] ADSCrossRefGoogle Scholar
  16. 16.
    O.J.C. Dias, P. Figueras, R. Monteiro, H.S. Reall, J.E. Santos, J. High Energy Phys. 1005, 076 (2010). arXiv:1001.4527 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos, Phys. Rev. D 82, 104025 (2010). arXiv:1006.1904 [hep-th] ADSCrossRefGoogle Scholar
  18. 18.
    O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos, J. High Energy Phys. 1012, 067 (2010). arXiv:1011.0996 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Bouhmadi-Lopez, V. Cardoso, A. Nerozzi, J.V. Rocha, Phys. Rev. D 81, 084051 (2010). arXiv:1003.4295 [gr-qc] ADSCrossRefGoogle Scholar
  20. 20.
    N. Pidokrajt, Information geometries in black hole physics. Ph.D. Thesis, Department of Physics, Stockholm University, Sweden (2009) Google Scholar
  21. 21.
    J.E. Åman, N. Pidokrajt, Phys. Rev. D 73, 024017 (2006). arXiv:hep-th/0510139 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    S. Bellucci, B.N. Tiwari, J. High Energy Phys. 1101, 118 (2011). arXiv:1010.1427 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Z.Z. Ma, Class. Quantum Gravity 26, 135003 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    P. Figueras, H.K. Kunduri, J. Lucietti, M. Rangamani, Phys. Rev. D 78, 044042 (2008). arXiv:0803.2998 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995). [Erratum-ibid. 68, 313 (1996)] MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    N. Pidokrajt, Information geometries in black hole physics. Ph.D. Thesis, Stockholm University, Sweden (2009) Google Scholar
  27. 27.
    D.C. Brody, D.W. Hook, J. Phys. A 42, 023001 (2008) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    G. Arcioni, E. Lozano-Tellechea, Phys. Rev. D 72, 104021 (2005). arXiv:hep-th/0412118 MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    P.C.W. Davies, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 353, 499 (1977) ADSCrossRefGoogle Scholar
  31. 31.
    J. Louko, S.N. Winters-Hilt, Phys. Rev. D 54, 2647 (1996). arXiv:gr-qc/9602003 MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 104026 (1999). arXiv:hep-th/9904197 MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    H. Quevedo, Gen. Relativ. Gravit. 40, 971 (2008). arXiv:0704.3102 [gr-qc] MathSciNetADSCrossRefzbMATHGoogle Scholar
  34. 34.
    A.J.M. Medved, Mod. Phys. Lett. A 23, 2149 (2008). arXiv:0801.3497 [gr-qc] MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    J.E. Åman, I. Bengtsson, N. Pidokrajt, Gen. Relativ. Gravit. 38, 1305 (2006). arXiv:gr-qc/0601119 ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    S.W. Wei, Y.X. Liu, C.E. Fu, H.T. Li, Adv. High Energy Phys. 2013, 734138 (2013). arXiv:0911.0270 MathSciNetGoogle Scholar
  37. 37.
    S. Bellucci, B.N. Tiwari, J. High Energy Phys. 1005, 023 (2010). arXiv:0910.5314 MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Y.H. Wei, Phys. Rev. D 80, 024029 (2009) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    R. Biswas, S. Chakraborty, Astrophys. Space Sci. 326, 39 (2010). arXiv:0905.1801 [gr-qc] ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    S. Chakraborty, T. Bandyopadhyay, Class. Quantum Gravity 25, 245015 (2008) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    S. Bellucci, V. Chandra, B.N. Tiwari, arXiv:0812.3792 [hep-th]
  42. 42.
    L.Á. Gergely, N. Pidokrajt, S. Winitzki, arXiv:0811.1548 [gr-qc]
  43. 43.
    T. Sarkar, G. Sengupta, B.N. Tiwari, J. High Energy Phys. 0810, 076 (2008). arXiv:0806.3513 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Y.S. Myung, Y.W. Kim, Y.J. Park, Phys. Lett. B 663, 342 (2008). arXiv:0802.2152 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    G. Ruppeiner, Phys. Rev. D 78, 024016 (2008). arXiv:0802.1326 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    A.J.M. Medved, Mod. Phys. Lett. A 23, 2149 (2008). arXiv:0801.3497 [gr-qc] MathSciNetADSCrossRefzbMATHGoogle Scholar
  47. 47.
    J.L. Álvarez, H. Quevedo, A. Sánchez, Phys. Rev. D 77, 084004 (2008). arXiv:0801.2279 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    J.E. Åman, N. Pidokrajt, EAS Publ. Ser. 30, 269 (2008). arXiv:0801.0016 [gr-qc] CrossRefGoogle Scholar
  49. 49.
    H. Quevedo, A. Vázquez, AIP Conf. Proc. 977, 165 (2008). arXiv:0712.0868 [math-ph] ADSCrossRefGoogle Scholar
  50. 50.
    J.E. Åman, N. Pidokrajt, J. Ward, EAS Publ. Ser. 30, 279 (2008). arXiv:0711.2201 [hep-th] CrossRefGoogle Scholar
  51. 51.
    B. Mirza, M. Zamani-Nasab, J. High Energy Phys. 0706, 059 (2007). arXiv:0706.3450 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    J.E. Åman, J. Bedford, D. Grumiller, N. Pidokrajt, J. Ward, J. Phys. Conf. Ser. 66, 012007 (2007). arXiv:gr-qc/0611119 ADSCrossRefGoogle Scholar
  53. 53.
    S. Wang, S.Q. Wu, F. Xie, L. Dan, Chin. Phys. Lett. 23, 1096 (2006). arXiv:hep-th/0601147 ADSCrossRefGoogle Scholar
  54. 54.
    J.y. Shen, R.G. Cai, B. Wang, R.K. Su, Int. J. Mod. Phys. A 22, 11 (2007). arXiv:gr-qc/0512035 MathSciNetADSCrossRefzbMATHGoogle Scholar
  55. 55.
    D.A. Johnston, W. Janke, R. Kenna, Acta Phys. Pol. B 34, 4923 (2003). arXiv:cond-mat/0308316 MathSciNetADSzbMATHGoogle Scholar
  56. 56.
    D. Astefanesei, M.J. Rodriguez, S. Theisen, J. High Energy Phys. 1008, 046 (2010). arXiv:1003.2421 [hep-th] ADSCrossRefGoogle Scholar
  57. 57.
    H.K. Kunduri, J. Lucietti, H.S. Reall, Phys. Rev. D 74, 084021 (2006). arXiv:hep-th/0606076 MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    J.E. Åman, Manual for CLASSI: classification programs for geometries in general relativity. Technical Report, Provisional edition. Distributed with the sources for SHEEP and CLASSI. Department of Physics, Stockholm University (2002) Google Scholar
  59. 59.
    J.E. Åman, I. Bengtsson, N. Pidokrajt, Gen. Relativ. Gravit. 35, 1733 (2003). arXiv:gr-qc/0304015 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsStockholm UniversityStockholmSweden

Personalised recommendations