Advertisement

Pilgrim dark energy with apparent and event horizons in non-flat universe

  • M. Sharif
  • Abdul Jawad
Regular Article - Theoretical Physics

Abstract

Pilgrim dark energy is an interesting proposal which is based on the conjecture that phantom-like dark energy with strong enough repulsive force can prevent the formation of a black hole. We investigate this conjecture by assuming the apparent and event horizons in non-flat universe and we develop different cosmological parameters. We construct the corresponding equation of state parameter, which indicates that its present values lie in the phantom era of the universe for different ranges of μ (pilgrim dark energy parameter) as well as ξ 2 (interacting parameter). It is interesting to mention here that the pilgrim dark energy with event horizon yields a phantom region for all cases of ξ 2 with μ<0. We also develop the ω Λ \(\omega'_{\varLambda}\) plane and explore the thawing as well as freezing region and ΛCDM limit for these models. The statefinders plane is also constructed, which shows the correspondence with different models such as quintessence and phantom dark energy, ΛCDM and Chaplygin gas. Finally, we investigate the validity of the generalized second law of thermodynamics with event horizon in a flat as well as non-flat universe.

Keywords

Dark Energy Event Horizon Apparent Horizon Dark Energy Model Cold Dark Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank the Higher Education Commission, Islamabad, Pakistan, for its financial support through the Indigenous Ph.D. 5000 Fellowship Program Batch-VII.

References

  1. 1.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    R.R. Caldwell, M. Doran, Phys. Rev. D 69, 103517 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    T. Koivisto, D.F. Mota, Phys. Rev. D 73, 083502 (2006) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S.F. Daniel, Phys. Rev. D 77, 103513 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    C. Fedeli, L. Moscardini, M. Bartelmann, Astron. Astrophys. 500, 667 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    P.J.E. Peebles, Rev. Mod. Phys. 75, 559 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    C. Armendariz-Picon, T. Damour, V. Mukhanov, Phys. Lett. B 458, 209 (1999) MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Bagla, H.K. Jassal, T. Padmanabhan, Phys. Rev. D 67, 063504 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    X. Zhang, F.Q. Wu, J. Zhang, J. Cosmol. Astropart. Phys. 01, 003 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    S.D.H. Hsu, Phys. Lett. B 594, 13 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    R.G. Cai, Phys. Lett. B 657, 228 (2007) MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Li, Phys. Lett. B 603, 1 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    M. Sharif, M. Zubair, J. Cosmol. Astropart. Phys. 03, 028 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 82, 014002 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    M. Sharif, S. Rani, Mod. Phys. Lett. A 26, 1657 (2011) MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Sharif, S. Rani, Phys. Scr. 84, 055005 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    E.V. Linder, Phys. Rev. D 81, 127301 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961) MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 01, 013 (2010) ADSGoogle Scholar
  22. 22.
    M. Sharif, F. Khanum, Gen. Relativ. Gravit. 43, 2885 (2011) MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Sharif, A. Jawad, Astrophys. Space Sci. 337, 789 (2012) ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Sharif, A. Jawad, Eur. Phys. J. C 72, 1901 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    L. Susskind, J. Math. Phys. 36, 6377 (1995) MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999) MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. 27.
    M. Sharif, A. Jawad, Eur. Phys. J. C 72, 2097 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    C. Gao, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    L. Granda, A. Oliveros, Phys. Lett. B 669, 275 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    S. Chen, J. Jing, Phys. Lett. B 679, 144 (2009) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    L. Xua, J. Lu, W. Li, Eur. Phys. J. C 64, 89 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    J. Lu et al., Eur. Phys. J. C 71, 1800 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    H. Wei, Class. Quantum Gravity 29, 175008 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    F.S.N. Lobo, Phys. Rev. D 71, 124022 (2005) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    F.S.N. Lobo, Phys. Rev. D 71, 084011 (2005) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    S. Sushkov, Phys. Rev. D 71, 043520 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    E. Babichev, V. Dokuchaev, Y. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    M. Sharif, G. Abbas, Chin. Phys. Lett. 28, 090402 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    P. Martin-Moruno, Phys. Lett. B 659, 40 (2008) MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. 40.
    M. Jamil, M.A. Rashid, A. Qadir, Eur. Phys. J. C 58, 325 (2008) MathSciNetADSCrossRefzbMATHGoogle Scholar
  41. 41.
    E. Babichev et al., Phys. Rev. D 78, 104027 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    M. Jamil, Eur. Phys. J. C 62, 325 (2009) MathSciNetCrossRefGoogle Scholar
  43. 43.
    M. Jamil, A. Qadir, Gen. Relativ. Gravit. 43, 1069 (2011) MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. 44.
    J. Bhadra, U. Debnath, Eur. Phys. J. C 72, 1912 (2012) ADSCrossRefGoogle Scholar
  45. 45.
    C.J. Gao et al., Phys. Rev. D 78, 024008 (2008) ADSCrossRefGoogle Scholar
  46. 46.
    T. Harada, H. Maeda, B.J. Carr, Phys. Rev. D 74, 024024 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    R. Akhoury, C.S. Gauthier, A. Vikman, J. High Energy Phys. 03, 082 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    Z.H. Li, A.Z. Wang, Mod. Phys. Lett. A 22, 1663 (2007) ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    M. Sharif, A. Jawad, Eur. Phys. J. C 73, 2382 (2013) ADSCrossRefGoogle Scholar
  50. 50.
    Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 08, 013 (2004) ADSCrossRefGoogle Scholar
  51. 51.
    L. Knox et al., Phys. Rev. D 73, 023503 (2006) ADSCrossRefGoogle Scholar
  52. 52.
    E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009) ADSCrossRefGoogle Scholar
  53. 53.
    K. Ichikawa et al., J. Cosmol. Astropart. Phys. 06, 005 (2006) ADSCrossRefGoogle Scholar
  54. 54.
    E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011) ADSCrossRefGoogle Scholar
  55. 55.
    S.H. Suyu et al., Astrophys. J. 766, 70 (2013) ADSCrossRefGoogle Scholar
  56. 56.
    C.Y. Sun, R.G. Yue, Phys. Rev. D 85, 043010 (2012) ADSCrossRefGoogle Scholar
  57. 57.
    R.R. Caldwell, E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005) ADSCrossRefGoogle Scholar
  58. 58.
    R.J. Scherrer, Phys. Rev. D 73, 043502 (2006) MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    T. Chiba, Phys. Rev. D 73, 063501 (2006) ADSCrossRefGoogle Scholar
  60. 60.
    Z.K. Guo, Y.S. Piao, X.M. Zhang, Y.Z. Zhang, Phys. Rev. D 74, 127304 (2006) ADSCrossRefGoogle Scholar
  61. 61.
    V. Sahni et al., JETP Lett. 77, 201 (2003) ADSCrossRefGoogle Scholar
  62. 62.
    T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995) MathSciNetADSCrossRefzbMATHGoogle Scholar
  63. 63.
    T. Padmanabhan, Class. Quantum Gravity 19, 5387 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar
  64. 64.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations