Advertisement

Scalar fluctuations of the scalar metric during inflation from a non-perturbative 5D large-scale repulsive gravity model

  • José Edgar Madriz Aguilar
  • Luz M. Reyes
  • Claudia Moreno
  • Mauricio BelliniEmail author
Regular Article - Theoretical Physics

Abstract

We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild–de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion.

Keywords

Scalar Field Inflationary Model Conformal Time Cosmological Scale Inflaton Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

J.E. Madriz-Aguilar, L.M. Reyes and C. Moreno acknowledge CONACYT (Mexico) and Mathematics Department of CUCEI-UdG for financial support. M. Bellini acknowledges CONICET (Argentina) and UNMdP for financial support.

References

  1. 1.
    A.H. Guth, Phys. Rev. D 23, 347 (1981) ADSCrossRefGoogle Scholar
  2. 2.
    D.H. Lyth, A. Riotto, Phys. Rep. 314, 1 (1999) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R.H. Brandenberger, Lect. Notes Phys. 738, 393–424 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    K.-i. Maeda, N. Ohta, Phys. Lett. B 597, 400–407 (2004) MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    P.S. Wesson, Gen. Relativ. Gravit. 35, 111 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    J.E. Madriz Aguilar, M. Bellini, Phys. Lett. B 679, 306 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Madriz Aguilar, M. Bellini, J. Cosmol. Astropart. Phys. 1011, 020 (2010) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    L.M. Reyes, J.E. Madriz Aguilar, M. Bellini, Eur. Phys. J. Plus 126, 56 (2011) CrossRefGoogle Scholar
  9. 9.
    L.M. Reyes, C. Moreno, J.E. Madriz Aguilar, M. Bellini, Phys. Lett. B 717, 17 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    T. Prokopec, P. Reska, J. Cosmol. Astropart. Phys. 11, 050 (2011) CrossRefGoogle Scholar
  11. 11.
    J.E. Madriz-Aguilar, M. Bellini, Phys. Lett. B 679, 306 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    T. Shiromizu, D. Ida, T. Torii, J. High Energy Phys. 11, 010 (2001) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    E.J. Copeland, E.W. Kolb, A.R. Liddle, J.E. Lidsey, Phys. Rev. D 48, 2529 (1993) ADSCrossRefGoogle Scholar
  14. 14.
    O. Lahav, A.R. Liddle, Phys. Rev. D 80, 280 (2012) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • José Edgar Madriz Aguilar
    • 1
  • Luz M. Reyes
    • 1
  • Claudia Moreno
    • 1
  • Mauricio Bellini
    • 2
    • 3
    Email author
  1. 1.Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e ingenierías (CUCEI)Universidad de Guadalajara (UdG)GuadalajaraMexico
  2. 2.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata (UNMdP)Mar del PlataArgentina
  3. 3.Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina

Personalised recommendations