Advertisement

Rare B s decays in the relativistic quark model

  • R. N. Faustov
  • V. O. GalkinEmail author
Regular Article - Theoretical Physics

Abstract

The branchings fractions of the rare B s decays are calculated in the framework of the QCD-motivated relativistic quark model. The form factors of the weak B s transitions to light mesons are expressed through the overlap integral of the initial and final meson wave functions in the whole accessible kinematical range. Explicit determination of the momentum transfer dependence of the form factors without additional model assumptions and extrapolations significantly improve the reliability of the obtained results. The approximate analytical form of the form factors is given in order to simplify the comparison with other predictions and experiment. The calculated form factors are applied for the investigations of the rare semileptonic, radiative and non-leptonic B s decays. The factorization approximation is used for the description of the non-leptonic decays. All results agree well with available experimental data.

Keywords

Form Factor LHCb Collaboration Transition Form Factor Light Meson Relativistic Quark Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to A. Ali, D. Ebert, C. Hambrock, M.A. Ivanov, V.A. Matveev and V.I. Savrin for useful discussions. This work was supported in part by the Russian Foundation for Basic Research under Grant No.12-02-00053-a.

References

  1. 1.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 1307, 084 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    J. Li et al. (Belle Collaboration), Phys. Rev. Lett. 108, 181808 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    R. Aaij et al. (LHCb Collaboration), Nucl. Phys. B 867, 1 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    R. Aaij et al. (LHCb Collaboration), Nucl. Phys. B 867, 547 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 87, 072004 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    R. Aaij et al. (LHCb Collaboration), Nucl. Phys. B 871, 403 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    R. Aaij et al. (LHCb Collaboration), Nucl. Phys. B 874, 663 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    R. Aaij et al. (LHCb Collaboration), arXiv:1306.2239 [hep-ex]
  10. 10.
    R.N. Faustov, V.O. Galkin, Phys. Rev. D 87, 034033 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    R.N. Faustov, V.O. Galkin, Phys. Rev. D 87, 094028 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 82, 034032 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    D. Ebert, V.O. Galkin, R.N. Faustov, Phys. Rev. D 57, 5663 (1998). Erratum-ibid. D 59, 019902 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 66, 197 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 79, 114029 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 71, 1825 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    R.N. Faustov, V.O. Galkin, Z. Phys. C 66, 119 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 73, 094002 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    R.N. Faustov, Ann. Phys. 78, 176 (1973) ADSCrossRefGoogle Scholar
  21. 21.
    R.N. Faustov, Nuovo Cimento A 69, 37 (1970) ADSCrossRefGoogle Scholar
  22. 22.
    F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 648, 267 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 82, 034019 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 75, 074008 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    D. Melikhov, B. Stech, Phys. Rev. D 62, 014006 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    P. Ball, R. Zwicky, Phys. Rev. D 71, 014029 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    A. Ali, G. Kramer, Y. Li, C.-D. Lu, Y.-L. Shen, W. Wang, Y.-M. Wang, Phys. Rev. D 76, 074018 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Ivanov, J.G. Korner, S.G. Kovalenko, P. Santorelli, G.G. Saidullaeva, Phys. Rev. D 85, 034004 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    R.-H. Li, C.-D. Lu, W. Wang, Phys. Rev. D 79, 034014 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    C.-D. Lu, W. Wang, Z.-T. Wei, Phys. Rev. D 76, 014013 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    Y.-L. Wu, M. Zhong, Y.-B. Zuo, Int. J. Mod. Phys. A 21, 6125 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    C.Q. Geng, C.C. Liu, J. Phys. G 29, 1103 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    F. Su, Y.-L. Wu, Y.-B. Yang, C. Zhuang, Eur. Phys. J. C 72, 1914 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    C. Hambrock, G. Hiller, Phys. Rev. Lett. 109, 091802 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    G. Buchalla, G. Hiller, G. Isidori, Phys. Rev. D 63, 014015 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    A. Faessler, T. Gutsche, M.A. Ivanov, J.G. Körner, V.E. Lyubovitskij, Eur. Phys. J. C 4, 18 (2002) Google Scholar
  37. 37.
    A. Ali, P. Ball, L.T. Handoko, G. Hiller, Phys. Rev. D 61, 074024 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, M. Wick, J. High Energy Phys. 0901, 019 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 111, 112003 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    M.V. Carlucci, P. Colangelo, F. De Fazio, Phys. Rev. D 80, 055023 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    K. Azizi, R. Khosravi, F. Falahati, Phys. Rev. D 82, 116001 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    H.-M. Choi, J. Phys. 37, 085005 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    M. Misiak, J. Urban, Phys. Lett. B 451, 161 (1999) ADSCrossRefGoogle Scholar
  44. 44.
    W. Altmannshofer, A.J. Buras, D.M. Straub, M. Wick, J. High Energy Phys. 04, 022 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    R.N. Faustov, V.O. Galkin, Phys. Rev. D 52, 5131 (1995) ADSCrossRefGoogle Scholar
  46. 46.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 64, 094022 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    D. Ebert, R.N. Faustov, V.O. Galkin, H. Toki, Phys. Rev. D 64, 054001 (2001) ADSCrossRefGoogle Scholar
  48. 48.
    A. Ali, B.D. Pecjak, C. Greub, Eur. Phys. J. C 55, 577 (2008) ADSCrossRefGoogle Scholar
  49. 49.
    P. Colangelo, F. De Fazio, W. Wang, Phys. Rev. D 83, 094027 (2011) ADSCrossRefGoogle Scholar
  50. 50.
    S. Dubnicka, A.Z. Dubnickova, M.A. Ivanov, A. Liptaj, Phys. Rev. D 87, 074201 (2013) CrossRefGoogle Scholar
  51. 51.
    M. Beneke, M. Neubert, Nucl. Phys. B 675, 333 (2003) ADSCrossRefGoogle Scholar
  52. 52.
    F. Thorne et al. (Belle Collaboration), arXiv:1309.0704 [hep-ex]

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Dorodnicyn Computing CentreRussian Academy of SciencesMoscowRussia

Personalised recommendations