Advertisement

Effective field theory analysis of new physics in e + e W + W at a linear collider

  • G. BuchallaEmail author
  • O. Catà
  • R. Rahn
  • M. Schlaffer
Regular Article - Theoretical Physics

Abstract

We analyze new-physics contributions to e + e W + W at the TeV energy scale, employing an effective field theory framework. A complete basis of next-to-leading-order operators in the standard-model effective Lagrangian is used, both for the nonlinear and the linear realization of the electroweak sector. The elimination of redundant operators via equations-of-motion constraints is discussed in detail. Polarized cross sections for e + e W + W (on-shell) are computed and the corrections to the standard-model results are given in an expansion for large \(s/M^{2}_{W}\). The dominant relative corrections grow with s and can be fully expressed in terms of modified gauge-fermion couplings. These corrections are interpreted in the context of the Goldstone-boson equivalence theorem. Explicit new-physics models are considered to illustrate the generation and the potential size of the coefficients in the effective Lagrangian. Brief comments are made on the production of W + W pairs at the LHC.

Keywords

Effective Field Theory Linear Collider Anomalous Coupling Unitary Gauge Redundant Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Sven Heinemeyer and Wolfgang Hollik for useful discussions. This work was performed in the context of the ERC Advanced Grant project ‘FLAVOUR’ (267104) and was supported in part by the DFG cluster of excellence ‘Origin and Structure of the Universe’. The work of M.S. was supported in part by the Joachim Herz Stiftung.

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock, C. Zhang, Ann. Phys. 335, 21 (2013). arXiv:1205.4231 [hep-ph] ADSCrossRefGoogle Scholar
  4. 4.
    C. Degrande. arXiv:1302.1112 [hep-ph]
  5. 5.
    Z. Han, W. Skiba, Phys. Rev. D 71, 075009 (2005). arXiv:hep-ph/0412166 ADSCrossRefGoogle Scholar
  6. 6.
    G. Cacciapaglia, C. Csaki, G. Marandella, A. Strumia, Phys. Rev. D 74, 033011 (2006). arXiv:hep-ph/0604111 ADSCrossRefGoogle Scholar
  7. 7.
    M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992) ADSCrossRefGoogle Scholar
  8. 8.
    W. Alles, C. Boyer, A.J. Buras, Nucl. Phys. B 119, 125 (1977) ADSCrossRefGoogle Scholar
  9. 9.
    J. Alcaraz et al. (ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Working Group Collaborations). arXiv:hep-ex/0612034
  10. 10.
    K.J.F. Gaemers, G.J. Gounaris, Z. Phys. C 1, 259 (1979) ADSCrossRefGoogle Scholar
  11. 11.
    U. Baur, D. Zeppenfeld, Phys. Lett. B 201, 383 (1988) ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Bilenky, J.L. Kneur, F.M. Renard, D. Schildknecht, Nucl. Phys. B 409, 22 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Bilenky, J.L. Kneur, F.M. Renard, D. Schildknecht, Nucl. Phys. B 419, 240 (1994). arXiv:hep-ph/9312202 ADSCrossRefGoogle Scholar
  14. 14.
    G. Gounaris, J.L. Kneur, D. Zeppenfeld, Z. Ajaltouni, A. Arhrib, G. Bella, F.A. Berends, M.S. Bilenky et al., in Physics at LEP2, Geneva 1995, vol. 1 (1995), pp. 525–576. and preprint—Gounaris, G. (rec. Jan. 96), 52 p. arXiv:hep-ph/9601233 Google Scholar
  15. 15.
    K. Hagiwara, T. Hatsukano, S. Ishihara, R. Szalapski, Nucl. Phys. B 496, 66 (1997). arXiv:hep-ph/9612268 ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Aguilar-Saavedra et al. (ECFA/DESY LC Physics Working Group Collaboration). arXiv:hep-ph/0106315
  17. 17.
    W. Menges, in 2nd ECFA/DESY Study 1998–2001 (2001), pp. 1635–1669 Google Scholar
  18. 18.
    G. Weiglein et al. (LHC/LC Study Group Collaboration), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364 ADSCrossRefGoogle Scholar
  19. 19.
    L. Linssen, A. Miyamoto, M. Stanitzki, H. Weerts. arXiv:1202.5940 [physics.ins-det]
  20. 20.
    V.V. Andreev, G. Moortgat-Pick, P. Osland, A.A. Pankov, N. Paver. arXiv:1205.0866 [hep-ph]
  21. 21.
    U. Baur, D. Zeppenfeld, Nucl. Phys. B 308, 127 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    ATLAS, Detector and physics performance technical design report, vol. 2. CERN-LHCC-99-15 Google Scholar
  23. 23.
    R.M. Thurman-Keup, A.V. Kotwal, M. Tecchio, A. Byon-Wagner, Rev. Mod. Phys. 73, 267 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    A.F. Falk, M.E. Luke, E.H. Simmons, Nucl. Phys. B 365, 523 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    A. De Rujula, M.B. Gavela, P. Hernandez, E. Masso, Nucl. Phys. B 384, 3 (1992) ADSCrossRefGoogle Scholar
  26. 26.
    J. Bagger, S. Dawson, G. Valencia, Nucl. Phys. B 399, 364 (1993). arXiv:hep-ph/9204211 ADSCrossRefGoogle Scholar
  27. 27.
    K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993) ADSCrossRefGoogle Scholar
  28. 28.
    H.-J. He, Y.-P. Kuang, C.P. Yuan, arXiv:hep-ph/9704276
  29. 29.
    M. Beyer et al., Eur. Phys. J. C 48, 353 (2006). arXiv:hep-ph/0604048 ADSCrossRefGoogle Scholar
  30. 30.
    G. Buchalla, O. Cata, J. High Energy Phys. 1207, 101 (2012). arXiv:1203.6510 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    W. Buchmuller, D. Wyler, Nucl. Phys. B 268, 621 (1986) ADSCrossRefGoogle Scholar
  32. 32.
    B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, J. High Energy Phys. 1010, 085 (2010). arXiv:1008.4884 [hep-ph] ADSCrossRefGoogle Scholar
  33. 33.
    R. Contino. arXiv:1005.4269 [hep-ph]
  34. 34.
    A.C. Longhitano, Phys. Rev. D 22, 1166 (1980) ADSCrossRefGoogle Scholar
  35. 35.
    A.C. Longhitano, Nucl. Phys. B 188, 118 (1981) ADSCrossRefGoogle Scholar
  36. 36.
    T. Appelquist, M.J. Bowick, E. Cohler, A.I. Hauser, Phys. Rev. D 31, 1676 (1985) ADSCrossRefGoogle Scholar
  37. 37.
    A.I. Hauser, Ph.D. Thesis, University of Yale, 1985 Google Scholar
  38. 38.
    T. Appelquist, G.H. Wu, Phys. Rev. D 48, 3235 (1993). arXiv:hep-ph/9304240 ADSCrossRefGoogle Scholar
  39. 39.
    T. Appelquist, G.H. Wu, Phys. Rev. D 51, 240 (1995). arXiv:hep-ph/9406416 ADSCrossRefGoogle Scholar
  40. 40.
    C. Arzt, M.B. Einhorn, J. Wudka, Nucl. Phys. B 433, 41 (1995). arXiv:hep-ph/9405214 ADSCrossRefGoogle Scholar
  41. 41.
    G.J. Gounaris, F.M. Renard, Z. Phys. C 59, 133 (1993) ADSCrossRefGoogle Scholar
  42. 42.
    A. Nyffeler, A. Schenk, Phys. Rev. D 62, 113006 (2000). arXiv:hep-ph/9907294 ADSCrossRefGoogle Scholar
  43. 43.
    C. Grojean, W. Skiba, J. Terning, Phys. Rev. D 73, 075008 (2006). arXiv:hep-ph/0602154 ADSCrossRefGoogle Scholar
  44. 44.
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987) ADSCrossRefGoogle Scholar
  45. 45.
    B. Holdom, Phys. Lett. B 258, 156 (1991) ADSCrossRefGoogle Scholar
  46. 46.
    G. Passarino, Nucl. Phys. B 868, 416 (2013). arXiv:1209.5538 [hep-ph] ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    C.R. Ahn, M.E. Peskin, B.W. Lynn, S.B. Selipsky, Nucl. Phys. B 309, 221 (1988) ADSCrossRefGoogle Scholar
  48. 48.
    A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Nucl. Phys. B 587, 67 (2000). arXiv:hep-ph/0006307 ADSCrossRefGoogle Scholar
  49. 49.
    A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B 724, 247 (2005). Erratum B 854, 504 (2012). arXiv:hep-ph/0505042 ADSCrossRefGoogle Scholar
  50. 50.
    A. Bierweiler, T. Kasprzik, H. Kühn, S. Uccirati, J. High Energy Phys. 1211, 093 (2012). arXiv:1208.3147 [hep-ph] ADSCrossRefGoogle Scholar
  51. 51.
    S. Dawson, G. Valencia, Phys. Rev. D 49, 2188 (1994). arXiv:hep-ph/9308248 ADSCrossRefGoogle Scholar
  52. 52.
    M. Diehl, O. Nachtmann, Z. Phys. C 62, 397 (1994) ADSCrossRefGoogle Scholar
  53. 53.
    M. Diehl, O. Nachtmann, F. Nagel, Eur. Phys. J. C 27, 375 (2003). arXiv:hep-ph/0209229 ADSCrossRefGoogle Scholar
  54. 54.
    H. Baer et al., arXiv:1306.6352 [hep-ph]
  55. 55.
    J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974). Erratum 11, 972 (1975) ADSCrossRefGoogle Scholar
  56. 56.
    C.E. Vayonakis, Lett. Nuovo Cimento 17, 383 (1976) CrossRefGoogle Scholar
  57. 57.
    M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261, 379 (1985) ADSCrossRefGoogle Scholar
  58. 58.
    C. Grosse-Knetter, I. Kuss, Z. Phys. C 66, 95 (1995). arXiv:hep-ph/9403291 MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    A. Dobado, J.R. Pelaez, Phys. Lett. B 329, 469 (1994). Addendum B 335, 554 (1994). arXiv:hep-ph/9404239 MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    P. Galison, A. Manohar, Phys. Lett. B 136, 279 (1984) ADSCrossRefGoogle Scholar
  61. 61.
    P. Langacker, Rev. Mod. Phys. 81, 1199 (2009). arXiv:0801.1345 [hep-ph] ADSCrossRefGoogle Scholar
  62. 62.
    P. Langacker, arXiv:0911.4294 [hep-ph]
  63. 63.
    K.S. Babu, C.F. Kolda, J. March-Russell, Phys. Rev. D 57, 6788 (1998). arXiv:hep-ph/9710441 ADSCrossRefGoogle Scholar
  64. 64.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 104, 201801 (2010). arXiv:0912.4500 [hep-ex] ADSCrossRefGoogle Scholar
  65. 65.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 80, 053012 (2009). arXiv:0907.4398 [hep-ex] ADSCrossRefGoogle Scholar
  66. 66.
    V.M. Abazov et al. (D0 Collaboration). arXiv:0907.4952 [hep-ex]
  67. 67.
    G. Aad et al. (ATLAS Collaboration). arXiv:1210.2979 [hep-ex]
  68. 68.
    S. Chatrchyan et al. (CMS Collaboration). arXiv:1301.4698 [hep-ex]
  69. 69.
    M. Dobbs, L. Lefebvre, ATL-PHYS-2002-022 Google Scholar
  70. 70.
    M. Dobbs, L. Lefebvre, ATL-PHYS-2002-023 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Fakultät für Physik, Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.DESYHamburgGermany

Personalised recommendations