Instanton wave and M-wave in multiple M5-branes system

  • Chong-Sun ChuEmail author
  • Hiroshi Isono
Regular Article - Theoretical Physics


We consider the non-abelian self-dual two-form theory (Chu and Ko, J. High Energy Phys. 1205:028, 2012) and find new exact solutions. Our solutions are supported by Yang–Mills (anti)instantons in four dimensions and describe a wave moving in null directions. We argue and provide evidence that these instanton wave solutions correspond to an M-wave (MW) on the worldvolume of multiple M5-branes. When dimensionally reduced on a circle, the MW/M5 system is reduced to the D0/D4 system with the D0-branes represented by the Yang–Mills instanton of the D4-branes Yang–Mills gauge theory. We show that this picture is precisely reproduced by the dimensional reduction of our instanton wave solutions.


Gauge Field Noncommutative Geometry Mill Equation Supersymmetric Completion Supersymmetry Transformation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is our pleasure to thank Kazuyuki Furuuchi, Sheng-Lan Ko, Christian Saemann, Richard Szabo, Pichet Vanichchapongjaroen and Martin Wolf for discussions. CSC is supported in part by the STFC Consolidated Grant ST/J000426/1 and by the grant 101-2112-M-007-021-MY3 of the National Science Council, Taiwan.


  1. 1.
    C.-S. Chu, S.-L. Ko, Non-Abelian action for multiple five-branes with self-dual tensors. J. High Energy Phys. 1205, 028 (2012). 1203.4224 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    E. Witten, Some comments on string dynamics, in Future Perspectives in String Theory, Los Angeles, (1995), pp. 501–523. hep-th/9507121 Google Scholar
  3. 3.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). hep-th/9711200 MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    P.S. Howe, E. Sezgin, D=11, p=5. Phys. Lett. B 394, 62 (1997). hep-th/9611008 MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P.S. Howe, E. Sezgin, P.C. West, Covariant field equations of the M theory five-brane. Phys. Lett. B 399, 49 (1997). hep-th/9702008 MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M. Perry, J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and born-infeld theory. Nucl. Phys. B 489, 47–64 (1997). hep-th/9611065 MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Aganagic, J. Park, C. Popescu, J.H. Schwarz, World volume action of the M theory five-brane. Nucl. Phys. B 496, 191–214 (1997). hep-th/9701166 MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    P. Pasti, D.P. Sorokin, M. Tonin, On Lorentz invariant actions for chiral p forms. Phys. Rev. D 55, 6292–6298 (1997). hep-th/9611100 MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    P. Pasti, D.P. Sorokin, M. Tonin, Covariant action for a D=11 five-brane with the chiral field. Phys. Lett. B 398, 41–46 (1997). hep-th/9701037 MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    I.A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D.P. Sorokin, M. Tonin, Covariant action for the superfive-brane of M theory. Phys. Rev. Lett. 78, 4332–4334 (1997). hep-th/9701149 MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    C.S. Chu, D.J. Smith, Multiple self-dual strings on M5-branes. J. High Energy Phys. 1001, 001 (2010). 0909.2333 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    C.-S. Chu, A theory of non-Abelian tensor gauge field with non-Abelian gauge symmetry G×G. 1108.5131 [hep-th]
  13. 13.
    P.-M. Ho, K.-W. Huang, Y. Matsuo, A non-Abelian self-dual gauge theory in 5+1 dimensions. J. High Energy Phys. 1107, 021 (2011). 1104.4040 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    H. Samtleben, E. Sezgin, R. Wimmer, (1,0) superconformal models in six dimensions. J. High Energy Phys. 1112, 062 (2011). 1108.4060 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    H. Samtleben, E. Sezgin, R. Wimmer, L. Wulff, New superconformal models in six dimensions: Gauge group and representation structure, in PoS CORFU 2011, vol. 071, (2011). 1204.0542 [hep-th] Google Scholar
  16. 16.
    H. Samtleben, E. Sezgin, R. Wimmer, Six-dimensional superconformal couplings of non-Abelian tensor and hypermultiplets. J. High Energy Phys. 1303, 068 (2013). 1212.5199 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    I. Bandos, H. Samtleben, D. Sorokin, Duality-symmetric actions for non-Abelian tensor fields. 1305.1304 [hep-th]
  18. 18.
    J. Bagger, N. Lambert, Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007). hep-th/0611108 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    A. Gustavsson, Algebraic structures on parallel M2-branes. 0709.1260 [hep-th]
  20. 20.
    J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). 0711.0955 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008). 0806.1218 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    C.-S. Chu, S.-L. Ko, P. Vanichchapongjaroen, Non-Abelian self-dual string solutions. J. High Energy Phys. 1209, 018 (2012). 1207.1095 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    C.-S. Chu, P. Vanichchapongjaroen, Non-Abelian self-dual string and M2-M5 branes intersection in supergravity. 1304.4322 [hep-th]
  24. 24.
    V. Niarchos, K. Siampos, M2-M5 blackfold funnels. J. High Energy Phys. 1206, 175 (2012). 1205.1535 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    C.M. Hull, Exact pp wave solutions of eleven-dimensional supergravity. Phys. Lett. B 139, 39 (1984) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    A.A. Tseytlin, Harmonic superpositions of M-branes. Nucl. Phys. B 475, 149 (1996). hep-th/9604035 MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. 27.
    M.R. Douglas, Branes within branes, in Strings, Branes and Dualities, Cargese (1997), pp. 267–275. hep-th/9512077 Google Scholar
  28. 28.
    E. Witten, Small instantons in string theory. Nucl. Phys. B 460, 541 (1996). hep-th/9511030 MathSciNetADSCrossRefzbMATHGoogle Scholar
  29. 29.
    O. Barwald, N.D. Lambert, P.C. West, On the energy momentum tensor of the M theory five-brane. Phys. Lett. B 459, 125 (1999). hep-th/9904097 MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    N. Lambert, P. Richmond, (2,0) supersymmetry and the light-cone description of M5-branes. J. High Energy Phys. 1202, 013 (2012). 1109.6454 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    A. Fayyazuddin, D.J. Smith, Localized intersections of M5-branes and four-dimensional superconformal field theories. J. High Energy Phys. 9904, 030 (1999). hep-th/9902210 MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    D.J. Smith, Intersecting brane solutions in string and M-theory. Class. Quantum Gravity 20, R233 (2003). hep-th/0210157 ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    A. Basu, J.A. Harvey, The M2–M5 brane system and a generalized Nahm’s equation. Nucl. Phys. B 713, 136 (2005). hep-th/0412310 MathSciNetADSCrossRefzbMATHGoogle Scholar
  34. 34.
    C.-S. Chu, D.J. Smith, Towards the quantum geometry of the M5-brane in a constant C-field from multiple membranes. J. High Energy Phys. 0904, 097 (2009). 0901.1847 [hep-th] ADSCrossRefGoogle Scholar
  35. 35.
    C.S. Chu, P.M. Ho, Noncommutative open string and D-brane. Nucl. Phys. B 550, 151 (1999). hep-th/9812219 MathSciNetADSCrossRefzbMATHGoogle Scholar
  36. 36.
    C.S. Chu, P.M. Ho, Constrained quantization of open string in background b field and noncommutative D-brane. Nucl. Phys. B 568, 447 (2000). hep-th/9906192 MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. 37.
    C.S. Chu, Noncommutative open string: neutral and charged. hep-th/0001144
  38. 38.
    V. Schomerus, D-branes and deformation quantization. J. High Energy Phys. 9906, 030 (1999). hep-th/9903205 MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    N. Seiberg, E. Witten, String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999). hep-th/9908142 MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    C.-S. Chu, G.S. Sehmbi, D1-strings in large RR 3-form flux, quantum Nambu geometry and M5-branes in C-field. J. Phys. A 45, 055401 (2012). 1110.2687 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    M.R. Douglas, On D=5 super Yang–Mills theory and (2,0) theory. J. High Energy Phys. 1102, 011 (2011). 1012.2880 [hep-th] ADSGoogle Scholar
  42. 42.
    N. Lambert, C. Papageorgakis, M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang–Mills. J. High Energy Phys. 1101, 083 (2011). 1012.2882 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    O. Aharony, M. Berkooz, S. Kachru, N. Seiberg, E. Silverstein, Matrix description of interacting theories in six-dimensions. Adv. Theor. Math. Phys. 1, 148–157 (1998). hep-th/9707079 MathSciNetGoogle Scholar
  44. 44.
    O. Aharony, M. Berkooz, N. Seiberg, Light-cone description of (2,0) superconformal theories in six dimensions. Adv. Theor. Math. Phys. 2, 119–153 (1998). hep-th/9712117 MathSciNetzbMATHGoogle Scholar
  45. 45.
    N. Arkani-Hamed, A.G. Cohen, D.B. Kaplan, A. Karch, L. Motl, Deconstructing (2,0) and little string theories. J. High Energy Phys. 01, 083 (2003). hep-th/0110146 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    R.S. Ward, Integrable and solvable systems, and relations among them. Philos. Trans. R. Soc. Lond. A 315, 451 (1985) ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    C. Saemann, M. Wolf, On twistors and conformal field theories from six dimensions. J. Math. Phys. 54, 013507 (2013). 1111.2539 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    L.J. Mason, R.A. Reid-Edwards, A. Taghavi-Chabert, Conformal field theories in six-dimensional twistor space. J. Geom. Phys. 62, 2353 (2012). 1111.2585 [hep-th] MathSciNetADSCrossRefzbMATHGoogle Scholar
  49. 49.
    C. Saemann, M. Wolf, Non-Abelian tensor multiplet equations from twistor space. 1205.3108 [hep-th]
  50. 50.
    C. Saemann, M-brane models and loop spaces. Mod. Phys. Lett. A 27, 1230019 (2012). 1206.0432 [hep-th] ADSCrossRefGoogle Scholar
  51. 51.
    C. Saemann, M. Wolf, Six-dimensional superconformal field theories from principal 3-bundles over twistor space. 1305.4870 [hep-th]

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsNational Tsing-Hua UniversityHsinchuTaiwan
  2. 2.National Center for Theoretical SciencesNational Tsing-Hua UniversityHsinchuTaiwan
  3. 3.Centre for Particle Theory and Department of MathematicsDurham UniversityDurhamUK

Personalised recommendations