Advertisement

Fermi-LAT gamma-ray signal from Earth limb, systematic detector effects and their implications for the 130 GeV gamma-ray excess

  • Andi HektorEmail author
  • Martti Raidal
  • Elmo Tempel
Regular Article - Theoretical Physics

Abstract

We look for possible spectral features and systematic effects in the Fermi LAT publicly available high-energy gamma-ray data by studying photons from the Galactic center, nearby galaxy clusters, nearby brightest galaxies, AGNs, unassociated sources, hydrogen clouds and from the Earth limb. Apart from the already known 130 GeV gamma-ray excesses from the first two sources, we find no statistically significant excesses from any of the cosmological sources nor from any control region. Therefore our main effort goes to the study of gamma rays appearing from the Earth limb. In the energy range of 30 to 200 GeV the Earth limb gamma-ray spectrum follows a power-law with spectral index 2.86±0.05 at 95 % CL, in a good agreement with the PAMELA measurement of the cosmic ray proton spectral index of 2.82–2.85, confirming the physical origin of the limb gamma-rays. In subsets of the Earth limb data at small photon incidence angle spectral features occur, including a feature at 130 GeV. We observe a systematic ∼2σ-level difference in the Earth limb spectra with small and large incidence angles. The behavior of those spectral features as well as the background indicates that those may be statistical fluctuations or complicated unknown systematic effects of the Fermi LAT. In the latter case, only the Fermi LAT Collaboration can give the final answer having access to raw data and all details of the reconstruction.

Keywords

Spectral Index Galaxy Cluster Galactic Center Dark Matter Annihilation Large Incidence Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Marco Cirelli and Gert Hütsi for numerous discussions, and Doug Finkbeiner and Christoph Weniger for communications related to this work. This work was supported by the ESF Grants 8090, 8499, 8943, MTT8, MTT59, MTT60, MJD52, MJD272, by the recurrent financing projects SF0690030s09, SF0060067s08 and by the European Union through the European Regional Development Fund.

References

  1. 1.
    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005). hep-ph/0404175 ADSCrossRefGoogle Scholar
  2. 2.
    E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO] ADSCrossRefGoogle Scholar
  3. 3.
    M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal, F. Sala et al., J. Cosmol. Astropart. Phys. 1103, 051 (2011). http://www.marcocirelli.net/PPPC4DMID.html. arXiv:1012.4515 [hep-ph] ADSCrossRefGoogle Scholar
  4. 4.
    L. Bergstrom, H. Snellman, Phys. Rev. D 37, 3737 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    T. Bringmann, F. Calore, G. Vertongen, C. Weniger, Phys. Rev. D 84, 103525 (2011). arXiv:1106.1874 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    W.B. Atwood et al. (LAT Collaboration), Astrophys. J. 697, 1071 (2009). arXiv:0902.1089 [astro-ph.IM] ADSCrossRefGoogle Scholar
  7. 7.
    T. Bringmann, X. Huang, A. Ibarra, S. Vogl, C. Weniger, J. Cosmol. Astropart. Phys. 1207, 054 (2012). arXiv:1203.1312 [hep-ph] ADSCrossRefGoogle Scholar
  8. 8.
    C. Weniger, J. Cosmol. Astropart. Phys. 1208, 007 (2012). arXiv:1204.2797 [hep-ph] ADSCrossRefGoogle Scholar
  9. 9.
    E. Tempel, A. Hektor, M. Raidal, J. Cosmol. Astropart. Phys. 1209, 032 (2012). Addendum-ibid. 1211, A01 (2012). arXiv:1205.1045 [hep-ph] ADSCrossRefGoogle Scholar
  10. 10.
    M. Su, D.P. Finkbeiner, arXiv:1206.1616 [astro-ph.HE]
  11. 11.
    A. Hektor, M. Raidal, E. Tempel, Astrophys. J. 762, L22 (2013). arXiv:1207.4466 [astro-ph.HE] ADSCrossRefGoogle Scholar
  12. 12.
    X.-Y. Huang, Q. Yuan, P.-F. Yin, X.-J. Bi, X.-L. Chen, J. Cosmol. Astropart. Phys. 1211, 048 (2012). arXiv:1208.0267 [astro-ph.HE] ADSCrossRefGoogle Scholar
  13. 13.
    M. Ackermann et al. (LAT Collaboration), Phys. Rev. D 86, 022002 (2012). arXiv:1205.2739 [astro-ph.HE] ADSCrossRefGoogle Scholar
  14. 14.
    A. Geringer-Sameth, S.M. Koushiappas, Phys. Rev. D 86, 021302 (2012). arXiv:1206.0796 [astro-ph.HE] ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Cline, Phys. Rev. D 86, 015016 (2012). arXiv:1205.2688 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    A. Rajaraman, T.M.P. Tait, D. Whiteson, J. Cosmol. Astropart. Phys. 1209, 003 (2012). arXiv:1205.4723 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    A. Ibarra, S. Lopez Gehler, M. Pato, J. Cosmol. Astropart. Phys. 1207, 043 (2012). arXiv:1205.0007 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    M. Su, D.P. Finkbeiner, arXiv:1207.7060 [astro-ph.HE]
  19. 19.
    D. Hooper, T. Linden, Phys. Rev. D 86, 083532 (2012). arXiv:1208.0828 [astro-ph.HE] ADSCrossRefGoogle Scholar
  20. 20.
    N. Mirabal, Mon. Not. R. Astron. Soc. 429, L109 (2013). arXiv:1208.1693 [astro-ph.HE] ADSCrossRefGoogle Scholar
  21. 21.
    A. Hektor, M. Raidal, E. Tempel, arXiv:1208.1996 [astro-ph.HE]
  22. 22.
    M. Cirelli, M. Kadastik, M. Raidal, A. Strumia, Nucl. Phys. B 813, 1 (2009). arXiv:0809.2409 [hep-ph] ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, Phys. Rev. D 79, 015014 (2009). arXiv:0810.0713 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    T. Cohen, M. Lisanti, T.R. Slatyer, J.G. Wacker, J. High Energy Phys. 1210, 134 (2012). arXiv:1207.0800 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    J.F. Beacom, N.F. Bell, G. Bertone, Phys. Rev. Lett. 94, 171301 (2005). astro-ph/0409403 ADSCrossRefGoogle Scholar
  26. 26.
    L. Bergstrom, T. Bringmann, M. Eriksson, M. Gustafsson, Phys. Rev. Lett. 94, 131301 (2005). astro-ph/0410359 ADSCrossRefGoogle Scholar
  27. 27.
    L. Bergstrom, T. Bringmann, M. Eriksson, M. Gustafsson, Phys. Rev. Lett. 95, 241301 (2005). hep-ph/0507229 ADSCrossRefGoogle Scholar
  28. 28.
    M. Gustafsson, E. Lundstrom, L. Bergstrom, J. Edsjo, Phys. Rev. Lett. 99, 041301 (2007). astro-ph/0703512 [astro-ph] ADSCrossRefGoogle Scholar
  29. 29.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait, H.-B. Yu, Nucl. Phys. B 844, 55 (2011). arXiv:1009.0008 [hep-ph] ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    S. Profumo, L. Ubaldi, C. Wainwright, Phys. Rev. D 82, 123514 (2010). arXiv:1009.5377 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait, M. Taoso, J. Cosmol. Astropart. Phys. 1004, 004 (2010). arXiv:0912.0004 [hep-ph] ADSCrossRefGoogle Scholar
  32. 32.
    E. Dudas, Y. Mambrini, S. Pokorski, A. Romagnoni, J. High Energy Phys. 0908, 014 (2009). arXiv:0904.1745 [hep-ph] ADSCrossRefGoogle Scholar
  33. 33.
    Y. Mambrini, J. Cosmol. Astropart. Phys. 0912, 005 (2009). arXiv:0907.2918 [hep-ph] ADSCrossRefGoogle Scholar
  34. 34.
    F. Ferrer, L.M. Krauss, S. Profumo, Phys. Rev. D 74, 115007 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    G. Chalons, A. Semenov, J. High Energy Phys. 1112, 055 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    E. Dudas, Y. Mambrini, S. Pokorski, A. Romagnoni, J. High Energy Phys. 1210, 123 (2012). arXiv:1205.1520 [hep-ph] ADSCrossRefGoogle Scholar
  37. 37.
    K.-Y. Choi, O. Seto, Phys. Rev. D 86, 043515 (2012). Erratum-ibid. D 86, 089904 (2012). arXiv:1205.3276 [hep-ph] ADSCrossRefGoogle Scholar
  38. 38.
    H.M. Lee, M. Park, W.-I. Park, Phys. Rev. D 86, 103502 (2012). arXiv:1205.4675 [hep-ph] ADSCrossRefGoogle Scholar
  39. 39.
    B. Kyae, J.-C. Park, Phys. Lett. B 718, 1425 (2013). arXiv:1205.4151 [hep-ph] ADSCrossRefGoogle Scholar
  40. 40.
    B.S. Acharya, G. Kane, P. Kumar, R. Lu, B. Zheng, arXiv:1205.5789 [hep-ph]
  41. 41.
    M.R. Buckley, D. Hooper, Phys. Rev. D 86, 043524 (2012). arXiv:1205.6811 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    X. Chu, T. Hambye, T. Scarna, M.H.G. Tytgat, Phys. Rev. D 86, 083521 (2012). arXiv:1206.2279 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    N. Weiner, I. Yavin, Phys. Rev. D 86, 075021 (2012). arXiv:1206.2910 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    L. Feng, Q. Yuan, Y.-Z. Fan, Phys. Lett. B 720, 1 (2013). arXiv:1206.4758 [astro-ph.HE] ADSCrossRefGoogle Scholar
  45. 45.
    D. Das, U. Ellwanger, P. Mitropoulos, J. Cosmol. Astropart. Phys. 1208, 003 (2012). arXiv:1206.2639 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    Z. Kang, T. Li, J. Li, Y. Liu, arXiv:1206.2863 [hep-ph]
  47. 47.
    J.H. Heo, C.S. Kim, Phys. Rev. D 87, 013007 (2013). arXiv:1207.1341 [astro-ph.HE] ADSCrossRefGoogle Scholar
  48. 48.
    W. Buchmuller, M. Garny, J. Cosmol. Astropart. Phys. 1208, 035 (2012). arXiv:1206.7056 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    R.-Z. Yang, Q. Yuan, L. Feng, Y.-Z. Fan, J. Chang, Phys. Lett. B 715, 285 (2012). arXiv:1207.1621 [astro-ph.CO] ADSCrossRefGoogle Scholar
  50. 50.
    I. Cholis, M. Tavakoli, P. Ullio, Phys. Rev. D 86, 083525 (2012). arXiv:1207.1468 [hep-ph] ADSCrossRefGoogle Scholar
  51. 51.
    I. Oda, arXiv:1207.1537 [hep-ph]
  52. 52.
    M.T. Frandsen, U. Haisch, F. Kahlhoefer, P. Mertsch, K. Schmidt-Hoberg, J. Cosmol. Astropart. Phys. 1210, 033 (2012). arXiv:1207.3971 [hep-ph] ADSCrossRefGoogle Scholar
  53. 53.
    J.-C. Park, S.C. Park, Phys. Lett. B 718, 1401 (2013). arXiv:1207.4981 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    S. Tulin, H.-B. Yu, K.M. Zurek, arXiv:1208.0009 [hep-ph]
  55. 55.
    J.M. Cline, A.R. Frey, G.D. Moore, Phys. Rev. D 86, 115013 (2012). arXiv:1208.2685 [hep-ph] ADSCrossRefGoogle Scholar
  56. 56.
    Y. Bai, J. Shelton, J. High Energy Phys. 1212, 056 (2012). arXiv:1208.4100 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    L. Bergstrom, Phys. Rev. D 86, 103514 (2012). arXiv:1208.6082 [hep-ph] ADSCrossRefGoogle Scholar
  58. 58.
    L. Wang, X.-F. Han, Phys. Rev. D 87, 015015 (2013). arXiv:1209.0376 [hep-ph] ADSCrossRefGoogle Scholar
  59. 59.
    N. Weiner, I. Yavin, Phys. Rev. D 87, 023523 (2013). arXiv:1209.1093 [hep-ph] ADSCrossRefGoogle Scholar
  60. 60.
    H.M. Lee, M. Park, W.-I. Park, J. High Energy Phys. 1212, 037 (2012). arXiv:1209.1955 [hep-ph] ADSCrossRefGoogle Scholar
  61. 61.
    S. Baek, P. Ko, E. Senaha, arXiv:1209.1685 [hep-ph]
  62. 62.
    B. Shakya, arXiv:1209.2427 [hep-ph]
  63. 63.
    Y. Li, Q. Yuan, Phys. Lett. B 715, 35 (2012). arXiv:1206.2241 [astro-ph.HE] ADSCrossRefGoogle Scholar
  64. 64.
    L. Bergstrom, G. Bertone, J. Conrad, C. Farnier, C. Weniger, J. Cosmol. Astropart. Phys. 1211, 025 (2012). arXiv:1207.6773 [hep-ph] ADSCrossRefGoogle Scholar
  65. 65.
    R. Laha, K.C.Y. Ng, B. Dasgupta, S. Horiuchi, Phys. Rev. D 87, 043516 (2013). arXiv:1208.5488 [astro-ph.CO] ADSCrossRefGoogle Scholar
  66. 66.
    K. Murase, J.F. Beacom, J. Cosmol. Astropart. Phys. 1302, 028 (2013). arXiv:1209.0225 [astro-ph.HE] ADSCrossRefGoogle Scholar
  67. 67.
    A. Boyarsky, D. Malyshev, O. Ruchayskiy, arXiv:1205.4700 [astro-ph.HE]
  68. 68.
    M. Ackermann et al. (Fermi-LAT Collaboration), Astrophys. J. Suppl. Ser. 203, 4 (2012). arXiv:1206.1896 [astro-ph.IM] ADSCrossRefGoogle Scholar
  69. 69.
    S. Profumo, T. Linden, J. Cosmol. Astropart. Phys. 1207, 011 (2012). arXiv:1204.6047 [astro-ph.HE] ADSCrossRefGoogle Scholar
  70. 70.
    F. Aharonian, D. Khangulyan, D. Malyshev, arXiv:1207.0458 [astro-ph.HE]
  71. 71.
    C. Weniger, Talk given in Gamma 2012, Heidelberg Google Scholar
  72. 72.
    T. Bringmann, C. Weniger, Phys. Dark Universe 1, 194 (2012). arXiv:1208.5481 [hep-ph] ADSCrossRefGoogle Scholar
  73. 73.
    A.A. Abdo et al. (Fermi-LAT Collaboration), Phys. Rev. D 80, 122004 (2009). arXiv:0912.1868 [astro-ph.HE] ADSCrossRefGoogle Scholar
  74. 74.
    O. Adriani et al. (PAMELA Collaboration), Science 332, 69 (2011). arXiv:1103.4055 [astro-ph.HE] ADSCrossRefGoogle Scholar
  75. 75.
    M. Kachelriess, S. Ostapchenko, Phys. Rev. D 86, 043004 (2012). arXiv:1206.4705 [astro-ph.HE] ADSCrossRefGoogle Scholar
  76. 76.
    Fermi-LAT Collaboration, Astrophys. J. Suppl. Ser. 199, 31 (2012). arXiv:1108.1435 [astro-ph.HE] CrossRefGoogle Scholar
  77. 77.
    G. Lavaux, M.J. Hudson, Mon. Not. R. Astron. Soc. 416, 2840 (2011). arXiv:1105.6107 [astro-ph.CO] ADSCrossRefGoogle Scholar
  78. 78.
    A.A. Abdo et al. (Fermi LAT Collaboration), Astrophys. J. 700, 597 (2009). arXiv:0902.1559 [astro-ph.HE] ADSCrossRefGoogle Scholar
  79. 79.
    V. de Heij, R. Braun, W.B. Burton, astro-ph/0201249
  80. 80.
    M.E. Putman, V. de Heij, L. Staveley-Smith, R. Braun, K.C. Freeman, B.K. Gibson, W.B. Burton, D.G. Barnes, astro-ph/0110416
  81. 81.
    M. Ackermann et al. (Fermi-LAT Collaboration), arXiv:1207.6275 [astro-ph.HE]
  82. 82.
    D.P. Finkbeiner, M. Su, C. Weniger, J. Cosmol. Astropart. Phys. 1301, 029 (2013). arXiv:1209.4562 [astro-ph.HE] ADSCrossRefGoogle Scholar
  83. 83.
    E. Bloom, E. Charles, E. Izaguirre, A. Snyder, A. Albert, B. Winer, Z. Yang, R. Essig, arXiv:1303.2733 [astro-ph.HE]
  84. 84.
    Fermi-LAT Collaboration, arXiv:1305.5597 [astro-ph.HE]

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.National Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Helsinki Institute of PhysicsHelsinkiFinland
  3. 3.Institute of PhysicsUniversity of TartuTartuEstonia
  4. 4.Tartu ObservatoryTõravereEstonia

Personalised recommendations