Advertisement

Should we still believe in constrained supersymmetry?

  • Csaba Balázs
  • Andy Buckley
  • Daniel Carter
  • Benjamin FarmerEmail author
  • Martin White
Regular Article - Theoretical Physics

Abstract

We calculate partial Bayes factors to quantify how the feasibility of the constrained minimal supersymmetric standard model (CMSSM) has changed in the light of a series of observations. This is done in the Bayesian spirit where probability reflects a degree of belief in a proposition and Bayes’ theorem tells us how to update it after acquiring new information. Our experimental baseline is the approximate knowledge that was available before LEP, and our comparison model is the Standard Model with a simple dark matter candidate. To quantify the amount by which experiments have altered our relative belief in the CMSSM since the baseline data we compute the partial Bayes factors that arise from learning in sequence the LEP Higgs constraints, the XENON100 dark matter constraints, the 2011 LHC supersymmetry search results, and the early 2012 LHC Higgs search results. We find that LEP and the LHC strongly shatter our trust in the CMSSM (with M 0 and M 1/2 below 2 TeV), reducing its posterior odds by approximately two orders of magnitude. This reduction is largely due to substantial Occam factors induced by the LEP and LHC Higgs searches.

Keywords

Dark Matter Higgs Mass Higgs Search Constrained Minimal Supersymmetric Standard Model Muon Anomalous Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are indebted to Sudhir Gupta and Doyoon Kim for their assistance with the calculation of Higgs boson production cross sections and decays. B.F. is thankful to Farhan Feroz for assistance with MultiNest. M.J.W. thanks Teng Jian Khoo and Ben Allanach for conversations regarding the calculation of ATLAS-based likelihoods for candidate SUSY models. This research was funded in part by the ARC Centre of Excellence for Particle Physics at the Tera-scale, and in part by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences Grant No. KJCX2.YW.W10. A.B. acknowledges the support of the Scottish Universities Physics Alliance. The use of Monash Sun Grid (MSG) and Edinburgh ECDF high-performance computing facilities is also gratefully acknowledged. Most numerical calculations were performed on the Australian National Computing Infrastructure (NCI) National Facility SGI XE cluster and Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) cluster.

References

  1. 1.
    S. Weinberg, The Quantum Theory of Fields. Vol. III: Supersymmetry (Cambridge University Press, Cambridge, 2000) CrossRefGoogle Scholar
  2. 2.
    G.L. Kane, Supersymmetry: Squarks, Photinos, and the Unveiling of the Ultimate Laws of Nature (Perseus Publishing, Cambridge, 2001) Google Scholar
  3. 3.
    M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles: An Account of Four-Dimensional N=1 Supersymmetry in High Energy Physics (World Scientific, Hackensack, 2004) Google Scholar
  4. 4.
    H. Baer, X. Tata, Weak scale supersymmetry: From superfields to scattering events (Cambridge University Press, Cambridge, 2006) CrossRefGoogle Scholar
  5. 5.
    P. Binetruy, Supersymmetry: Theory, Experiment and Cosmology (Oxford University Press, Oxford, 2006) Google Scholar
  6. 6.
    J. Terning, Modern Supersymmetry: Dynamics and Duality (Oxford University Press, Oxford, 2006) Google Scholar
  7. 7.
    N. Polonsky, Supersymmetry: structure and phenomena. Extensions of the standard model. Lect. Notes Phys. M 68, 1–169 (2001). arXiv:hep-ph/0108236 [hep-ph] MathSciNetGoogle Scholar
  8. 8.
    H. Pagels, J.R. Primack, Supersymmetry, cosmology and new TeV physics. Phys. Rev. Lett. 48, 223 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    H. Goldberg, Constraint on the photino mass from cosmology. Phys. Rev. Lett. 50, 1419 (1983) ADSCrossRefGoogle Scholar
  10. 10.
    P. Ramond, Journeys Beyond the Standard Model (Perseus Books, Cambridge, 1999) Google Scholar
  11. 11.
    H. Baer, C. Balazs, M. Brhlik, P. Mercadante, X. Tata et al., Aspects of supersymmetric models with a radiatively driven inverted mass hierarchy. Phys. Rev. D 64, 015002 (2001). arXiv:hep-ph/0102156 [hep-ph] ADSGoogle Scholar
  12. 12.
    C. Balazs, M.S. Carena, A. Menon, D. Morrissey, C. Wagner, The supersymmetric origin of matter. Phys. Rev. D 71, 075002 (2005). arXiv:hep-ph/0412264 [hep-ph] ADSGoogle Scholar
  13. 13.
    D.V. Nanopoulos, K.A. Olive, M. Srednicki, K. Tamvakis, Primordial inflation in simple supergravity. Phys. Lett. B 123, 41 (1983) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R. Holman, P. Ramond, G.G. Ross, Supersymmetric inflationary cosmology. Phys. Lett. B 137, 343–347 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150 (1981) ADSCrossRefGoogle Scholar
  16. 16.
    A.H. Chamseddine, R.L. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. 49, 970 (1982) ADSCrossRefGoogle Scholar
  17. 17.
    H. Baer, C. Balazs, Chi**2 analysis of the minimal supergravity model including WMAP, g(mu)-2 and b → s gamma constraints. J. Cosmol. Astropart. Phys. 0305, 006 (2003). arXiv:hep-ph/0303114 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Likelihood analysis of the CMSSM parameter space. Phys. Rev. D 69, 095004 (2004). arXiv:hep-ph/0310356 [hep-ph] ADSGoogle Scholar
  19. 19.
    P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC. Eur. Phys. J. C 66, 215–259 (2010). arXiv:0907.2589 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    P. Bechtle, K. Desch, H. Dreiner, M. Kramer, B. O’Leary et al., Present and possible future implications for mSUGRA of the non-discovery of SUSY at the LHC. arXiv:1105.5398 [hep-ph]
  21. 21.
    S. Heinemeyer, G. Weiglein, Predicting supersymmetry. Nucl. Phys. Proc. Suppl. 205–206, 283–288 (2010). arXiv:1007.0206 [hep-ph] CrossRefGoogle Scholar
  22. 22.
    O. Buchmueller, R. Cavanaugh, D. Colling, A. De Roeck, M. Dolan et al., Frequentist analysis of the parameter space of minimal supergravity. Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    D.E. Lopez-Fogliani, L. Roszkowski, R. Ruiz de Austri, T.A. Varley, A Bayesian analysis of the constrained NMSSM. Phys. Rev. D 80, 095013 (2009). arXiv:0906.4911 [hep-ph] ADSGoogle Scholar
  24. 24.
    M.E. Cabrera, J.A. Casas, R. Ruiz de Austri, MSSM forecast for the LHC. J. High Energy Phys. 1005, 043 (2010). arXiv:0911.4686 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    O. Buchmueller, R. Cavanaugh, D. Colling, A. De Roeck, M. Dolan et al., Supersymmetry and dark matter in light of LHC 2010 and Xenon100 data. Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    J. Ellis, K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM. arXiv:1202.3262 [hep-ph]
  27. 27.
    P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino. arXiv:1204.4199 [hep-ph]
  28. 28.
    B. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits. Phys. Rev. D 83, 095019 (2011). arXiv:1102.3149 [hep-ph] ADSGoogle Scholar
  29. 29.
    B. Allanach, T. Khoo, C. Lester, S. Williams, The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit. J. High Energy Phys. 1106, 035 (2011). arXiv:1103.0969 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    G. Bertone, D.G. Cerdeno, M. Fornasa, R. Ruiz de Austri, C. Strege et al., Global fits of the cMSSM including the first LHC and XENON100 data. J. Cosmol. Astropart. Phys. 1201, 015 (2012). arXiv:1107.1715 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM. arXiv:1111.6098 [hep-ph]
  32. 32.
    O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis et al., Supersymmetry in light of 1/fb of LHC data. arXiv:1110.3568 [hep-ph]
  33. 33.
    O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis et al., Higgs and supersymmetry. arXiv:1112.3564 [hep-ph]
  34. 34.
    G.D. Starkman, R. Trotta, P.M. Vaudrevange, Introducing doubt in Bayesian model comparison. arXiv:0811.2415 [physics.data-an]
  35. 35.
    M.E. Cabrera, J. Casas, V.A. Mitsou, R. Ruiz de Austri, J. Terron, Histogram comparison as a powerful tool for the search of new physics at LHC. Application to CMSSM. arXiv:1109.3759 [hep-ph]
  36. 36.
    S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Benchmark models, planes, lines and points for future SUSY searches at the LHC. Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph] ADSCrossRefGoogle Scholar
  37. 37.
    S. Sekmen, S. Kraml, J. Lykken, F. Moortgat, S. Padhi et al., Interpreting LHC SUSY searches in the phenomenological MSSM. arXiv:1109.5119 [hep-ph]
  38. 38.
    C. Strege, G. Bertone, D. Cerdeno, M. Fornasa, R. Ruiz de Austri et al., Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data. arXiv:1112.4192 [hep-ph]
  39. 39.
    L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM. arXiv:1202.1503 [hep-ph]
  40. 40.
    A. O’Hagan, Fractional bayes factors for model comparison. J. Royal Stat. Soc. Ser. B, Methodol. 57(1), 99–138 (1995) MathSciNetzbMATHGoogle Scholar
  41. 41.
    J. Berger, L. Pericchi, The intrinsic bayes factor for model selection and prediction. J. Am. Stat. Assoc. 91(433), 109–122 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    J. Berger, J. Mortera, Default bayes factors for nonnested hypothesis testing. J. Am. Stat. Assoc. 94(446), 542–554 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    B. Allanach, Naturalness priors and fits to the constrained minimal supersymmetric standard model. Phys. Lett. B 635, 123–130 (2006). arXiv:hep-ph/0601089 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    B.C. Allanach, K. Cranmer, C.G. Lester, A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts. J. High Energy Phys. 0708, 023 (2007). arXiv:0705.0487 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    M.E. Cabrera, J.A. Casas, R. Ruiz de Austri, Bayesian approach and naturalness in MSSM analyses for the LHC. J. High Energy Phys. 03, 075 (2009). arXiv:0812.0536 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    M.E. Cabrera, Bayesian study and naturalness in MSSM forecast for the LHC. arXiv:1005.2525 [hep-ph]
  47. 47.
    L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 126 GeV. arXiv:1112.2703 [hep-ph]
  48. 48.
    P. Athron, D.J. Miller, A new measure of fine tuning. Phys. Rev. D 76, 075010 (2007). arXiv:0705.2241 [hep-ph] ADSGoogle Scholar
  49. 49.
    S. Cassel, D. Ghilencea, G. Ross, Testing SUSY. Phys. Lett. B 687, 214–218 (2010). arXiv:0911.1134 [hep-ph] ADSCrossRefGoogle Scholar
  50. 50.
    D. Horton, G. Ross, Naturalness and focus points with non-universal Gaugino masses. Nucl. Phys. B 830, 221–247 (2010). arXiv:0908.0857 [hep-ph] ADSCrossRefGoogle Scholar
  51. 51.
    S. Cassel, D. Ghilencea, G. Ross, Testing SUSY at the LHC: electroweak and dark matter fine tuning at two-loop order. Nucl. Phys. B 835, 110–134 (2010). arXiv:1001.3884 [hep-ph] ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    S. Akula, M. Liu, P. Nath, G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter. arXiv:1111.4589 [hep-ph]
  53. 53.
    A. Arbey, M. Battaglia, F. Mahmoudi, Implications of LHC searches on SUSY particle spectra: the pMSSM parameter space with neutralino dark matter. Eur. Phys. J. C 72, 1847 (2012). arXiv:1110.3726 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    S. Cassel, D. Ghilencea, S. Kraml, A. Lessa, G. Ross, Fine-tuning implications for complementary dark matter and LHC SUSY searches. J. High Energy Phys. 1105, 120 (2011). arXiv:1101.4664 [hep-ph] ADSCrossRefGoogle Scholar
  55. 55.
    M. Papucci, J.T. Ruderman, A. Weiler, Natural SUSY endures. arXiv:1110.6926 [hep-ph]
  56. 56.
    T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Natural predictions for the Higgs boson mass and supersymmetric contributions to rare processes. Phys. Lett. B 708, 93–99 (2012). arXiv:1109.2110 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    Z. Kang, J. Li, T. Li, On the naturalness of the (N)MSSM. arXiv:1201.5305 [hep-ph]
  58. 58.
    E. Jaynes, G. Bretthorst, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003) CrossRefGoogle Scholar
  59. 59.
    F. Feroz, B.C. Allanach, M. Hobson, S.S. AbdusSalam, R. Trotta et al., Bayesian selection of sign(mu) within mSUGRA in global fits including WMAP5 results. J. High Energy Phys. 0810, 064 (2008). arXiv:0807.4512 [hep-ph] ADSCrossRefGoogle Scholar
  60. 60.
    S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz, M.P. Hobson, Selecting a model of supersymmetry breaking mediation. Phys. Rev. D 80, 035017 (2009). arXiv:0906.0957 [hep-ph] ADSGoogle Scholar
  61. 61.
    F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri, R. Trotta, Are \(BR(\bar{B} \to X_{s} \gamma)\) and (g−2)μ consistent within the constrained MSSM? arXiv:0903.2487 [hep-ph]
  62. 62.
    M.E. Cabrera, J. Casas, R. Ruiz de Austri, R. Trotta, Quantifying the tension between the Higgs mass and (g−2)μ in the CMSSM. Phys. Rev. D 84, 015006 (2011). arXiv:1011.5935 [hep-ph] ADSGoogle Scholar
  63. 63.
    M. Pierini, H. Prosper, S. Sekmen, M. Spiropulu, Model inference with reference priors. arXiv:1107.2877 [hep-ph]
  64. 64.
    D. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2003) zbMATHGoogle Scholar
  65. 65.
    R. Solomonoff, A formal theory of inductive inference. Part I. Inf. Control 7(1), 1–22 (1964). http://www.sciencedirect.com/science/article/pii/S0019995864902232 MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    S. Fichet, Quantified naturalness from Bayesian statistics. arXiv:1204.4940 [hep-ph]
  67. 67.
    P. Bock, J. Carr, S. De Jong, F. Di Lodovico, E. Gross, P. Igo-Kemenes, P. Janot, W. Murray, M. Pieri, A.L. Read, V. Ruhlmann-Kleider, A. Sopczak (ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group Collaboration), Lower bound for the standard model Higgs boson mass from combining the results of the four lep experiments. Tech. rep., CERN, Geneva (1998). http://cdsweb.cern.ch/record/353201
  68. 68.
    ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups Collaboration, Precision Electroweak Measurements and Constraints on the Standard Model. arXiv:1012.2367 [hep-ex]
  69. 69.
    G. Aad et al. (ATLAS Collaboration), Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb−1 of pp collisions at \(\sqrt{s}=7\) TeV with ATLAS. arXiv:1202.1414 [hep-ex]
  70. 70.
    G. Aad et al. (ATLAS Collaboration), Search for the Higgs boson in the HWW lνlν decay channel in pp collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector. arXiv:1112.2577 [hep-ex]
  71. 71.
    G. Aad et al. (ATLAS Collaboration), Search for the standard model Higgs boson in the decay channel HZZ →4l with 4.8 fb−1 of pp collisions at \(\sqrt {s}=7\) TeV with ATLAS. arXiv:1202.1415 [hep-ex]
  72. 72.
    G. Aad et al. (ATLAS Collaboration), Combined search for the standard model Higgs boson using up to 4.9 fb−1 of pp collision data at \(\sqrt{s} = 7\) TeV with the ATLAS detector at the LHC. Phys. Lett. B 710, 49–66 (2012). arXiv:1202.1408 [hep-ex] ADSCrossRefGoogle Scholar
  73. 73.
    F. Feroz, M.P. Hobson, M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009). arXiv:0809.3437 [astro-ph] ADSCrossRefGoogle Scholar
  74. 74.
    F. Feroz, M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis. arXiv:0704.3704 [astro-ph]
  75. 75.
    J. Skilling, Nested sampling. AIP Conf. Proc. 735(1), 395–405 (2004). http://link.aip.org/link/?APC/735/395/1 MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Y. Akrami, P. Scott, J. Edsjo, J. Conrad, L. Bergstrom, A profile likelihood analysis of the constrained MSSM with genetic algorithms. J. High Energy Phys. 1004, 057 (2010). arXiv:0910.3950 [hep-ph] ADSCrossRefGoogle Scholar
  77. 77.
    M. Bridges, K. Cranmer, F. Feroz, M. Hobson, R. Ruiz de Austri et al., A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques. J. High Energy Phys. 1103, 012 (2011). arXiv:1011.4306 [hep-ph] ADSCrossRefGoogle Scholar
  78. 78.
    F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, ISAJET 7.69: A Monte Carlo event generator for p p, anti-p p, and e+ e- reactions. arXiv:hep-ph/0312045
  79. 79.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs: a tool for dark matter studies. arXiv:1005.4133 [hep-ph]
  80. 80.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs2.1. Comput. Phys. Commun. 180, 747–767 (2009). arXiv:0803.2360 [hep-ph] ADSCrossRefGoogle Scholar
  81. 81.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs2.0: a program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 176, 367–382 (2007). arXiv:hep-ph/0607059 ADSCrossRefzbMATHGoogle Scholar
  82. 82.
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of B -> K* gamma in the MSSM. Comput. Phys. Commun. 178, 745–754 (2008). arXiv:0710.2067 [hep-ph] ADSCrossRefzbMATHGoogle Scholar
  83. 83.
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry. Comput. Phys. Commun. 180, 1579–1613 (2009). arXiv:0808.3144 [hep-ph] ADSCrossRefGoogle Scholar
  84. 84.
    A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998). arXiv:hep-ph/9704448 [hep-ph] ADSCrossRefzbMATHGoogle Scholar
  85. 85.
    F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri, R. Trotta, Challenges of profile likelihood evaluation in multi-dimensional SUSY scans. J. High Energy Phys. 06, 042 (2011). arXiv:1101.3296 [hep-ph] ADSCrossRefGoogle Scholar
  86. 86.
    K. Nakamura, et al. (Particle Data Group), Review of particle physics. J. Phys. G, Nucl. Part. Phys. 37(7A), 075021 (2010), and 2011 partial update for the 2012 edition. http://stacks.iop.org/0954-3899/37/i=7A/a=075021 ADSCrossRefGoogle Scholar
  87. 87.
    H. Jeffreys, Theory of Probability (1961) zbMATHGoogle Scholar
  88. 88.
    R. Barbieri, G.F. Giudice, Upper bounds on supersymmetric particle masses. Nucl. Phys. B 306(1), 63–76 (1988) ADSCrossRefGoogle Scholar
  89. 89.
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Efficient reconstruction of CMSSM parameters from LHC data—a case study. Phys. Rev. D 82, 055003 (2010). arXiv:0907.0594 [hep-ph] ADSGoogle Scholar
  90. 90.
    D.M. Ghilencea, H.M. Lee, M. Park, Tuning supersymmetric models at the LHC: a comparative analysis at two-loop level, 23 pp., 46 figs. arXiv:1203.0569 [hep-ph]
  91. 91.
    D. Ghilencea, G. Ross, The fine-tuning cost of the likelihood in SUSY models. arXiv:1208.0837 [hep-ph]
  92. 92.
    E. Komatsu et al. (WMAP Collaboration), Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO] ADSCrossRefGoogle Scholar
  93. 93.
    M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Upgraded breaking of the HLS model: a full solution to the τ e + e and ϕ decay issues and its consequences on g-2 VMD estimates. Eur. Phys. J. C 72, 1848 (2012). arXiv:1106.1315 [hep-ph] ADSCrossRefGoogle Scholar
  94. 94.
    D. Asner et al. (Heavy Flavor Averaging Group Collaboration), Averages of b-hadron, c-hadron, and tau-lepton properties. arXiv:1010.1589 [hep-ex]
  95. 95.
    B. Aubert et al. (BABAR Collaboration), Measurement of branching fractions and CP and isospin asymmetries in BK γ. arXiv:0808.1915 [hep-ex]
  96. 96.
    B. Aubert et al. (BABAR Collaboration), Observation of the semileptonic decays \(B \to D^{*} \tau^{-} \bar{\nu}_{\tau}\) and evidence for \(B \to D \tau^{-} \bar{\nu}_{\tau}\). Phys. Rev. Lett. 100, 021801 (2008). arXiv:0709.1698 [hep-ex] ADSCrossRefGoogle Scholar
  97. 97.
    M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays Collaboration), Precision tests of the standard model with leptonic and semileptonic kaon decays. arXiv:0801.1817 [hep-ph]
  98. 98.
    W.-M. Yao et al. (Particle Data Group), Review of particle physics. J. Phys. G 33 (2006). http://pdg.lbl.gov
  99. 99.
    V. Barger, P. Langacker, H.-S. Lee, G. Shaughnessy, Higgs sector in extensions of the MSSM. Phys. Rev. D 73, 115010 (2006). arXiv:hep-ph/0603247 ADSGoogle Scholar
  100. 100.
    E. Aprile et al. (XENON100 Collaboration), Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549 [astro-ph.CO] ADSCrossRefGoogle Scholar
  101. 101.
    M.-O. Bettler, Search for B s,dμμ at LHCb with 300 pb−1. arXiv:1110.2411 [hep-ex]
  102. 102.
    G. Aad et al. (ATLAS Collaboration), Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \(\sqrt{s} = 7~\mbox {TeV}\) proton–proton collisions. arXiv:1109.6572 [hep-ex]
  103. 103.
    O. Buchmueller, R. Cavanaugh, D. Colling, A. de Roeck, M. Dolan et al., Implications of initial LHC searches for supersymmetry. Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 [hep-ph] ADSCrossRefGoogle Scholar
  104. 104.
    E. Aprile et al. (XENON100 Collaboration), Likelihood approach to the first dark matter results from XENON100. Phys. Rev. D 84, 052003 (2011). arXiv:1103.0303 [hep-ex] ADSGoogle Scholar
  105. 105.
    G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C, Part. Fields 71(2), 1–19 (2011). arXiv:1007.1727 [data-an] CrossRefGoogle Scholar
  106. 106.
    A.L. Read, Presentation of search results: the CL s technique. J. Phys. G, Nucl. Part. Phys. 28(10), 2693 (2002). http://stacks.iop.org/0954-3899/28/i=10/a=313 ADSCrossRefGoogle Scholar
  107. 107.
    J.M. Alarcon, J.M. Camalich, J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term. arXiv:1110.3797 [hep-ph]
  108. 108.
    M.M. Pavan, I.I. Strakovsky, R.L. Workman, R.A. Arndt, The pion nucleon Sigma term is definitely large: results from a GWU analysis of pi N scattering data. PiN Newslett. 16, 110–115 (2002). arXiv:hep-ph/0111066 Google Scholar
  109. 109.
    J. Gasser, H. Leutwyler, M. Sainio, Sigma-term update. Phys. Lett. B 253(1–2), 252–259 (1991). http://www.sciencedirect.com/science/article/pii/037026939191393A ADSCrossRefGoogle Scholar
  110. 110.
    R. Koch, A new determination of the pi N sigma term using hyperbolic dispersion relations in the (nu**2, t) plane. Z. Phys. C 15, 161–168 (1982) ADSGoogle Scholar
  111. 111.
    J. Giedt, A.W. Thomas, R.D. Young, Dark matter, the CMSSM and lattice QCD. Phys. Rev. Lett. 103, 201802 (2009). arXiv:0907.4177 [hep-ph] ADSCrossRefGoogle Scholar
  112. 112.
    R.D. Young, A.W. Thomas, Octet baryon masses and sigma terms from an SU(3) chiral extrapolation. Phys. Rev. D 81, 014503 (2010). arXiv:0901.3310 [hep-lat] ADSCrossRefGoogle Scholar
  113. 113.
    J. Gasser, H. Leutwyler, Quark masses. Phys. Rep. 87, 77–169 (1982) ADSCrossRefGoogle Scholar
  114. 114.
    B. Borasoy, U.-G. Meissner, Chiral expansion of baryon masses and sigma-terms. Ann. Phys. 254, 192–232 (1997). arXiv:hep-ph/9607432 ADSCrossRefGoogle Scholar
  115. 115.
    M.E. Sainio, Pion nucleon sigma-term: a review. PiN Newslett. 16, 138–143 (2002). arXiv:hep-ph/0110413 Google Scholar
  116. 116.
    M. Knecht, Working group summary: pi N sigma term. PiN Newslett. 15, 108–113 (1999). arXiv:hep-ph/9912443 Google Scholar
  117. 117.
    J.R. Ellis, K.A. Olive, C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter. Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656 [hep-ph] ADSGoogle Scholar
  118. 118.
    G. Aad et al. (ATLAS Collaboration), The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008) CrossRefGoogle Scholar
  119. 119.
    R. Adolphi et al. (CMS Collaboration), The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008) CrossRefGoogle Scholar
  120. 120.
    G. Aad et al. (ATLAS Collaboration), Search for diphoton events with large missing transverse momentum in 1 fb−1 of 7 TeV proton–proton collision data with the ATLAS detector. arXiv:1111.4116 [hep-ex]
  121. 121.
    G. Aad et al. (ATLAS Collaboration), Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \(\sqrt{s} = 7\) TeV proton–proton collisions. arXiv:1110.6189 [hep-ex]
  122. 122.
    G. Aad et al. (ATLAS Collaboration), Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \(\sqrt{s}=7\) TeV pp collisions with the ATLAS detector. J. High Energy Phys. 1111, 099 (2011). arXiv:1110.2299 [hep-ex] ADSCrossRefGoogle Scholar
  123. 123.
    G. Aad et al. (ATLAS Collaboration), Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \(\sqrt{s} = 7\) TeV pp collisions using 1 fb−1 of ATLAS data. arXiv:1109.6606 [hep-ex]
  124. 124.
    S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry at the LHC in events with jets and missing transverse energy. http://cdsweb.cern.ch/record/1381201
  125. 125.
    S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry in all-hadronic events with MT2. http://cdsweb.cern.ch/record/1377032
  126. 126.
    S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry in all-hadronic events with missing energy. http://cdsweb.cern.ch/record/1378478
  127. 127.
    N. Desai, B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data. arXiv:1111.2830 [hep-ph]
  128. 128.
    C. Beskidt, W. de Boer, D. Kazakov, F. Ratnikov, E. Ziebarth et al., Constraints from the decay \(B_{s}^{0} \to\mu^{+} \mu^{-}\) and LHC limits on supersymmetry. Phys. Lett. B 705, 493–497 (2011). arXiv:1109.6775 [hep-ex] ADSCrossRefGoogle Scholar
  129. 129.
    B. Allanach, T. Khoo, K. Sakurai, Interpreting a 1 fb−1 ATLAS search in the minimal anomaly mediated supersymmetry breaking model. arXiv:1110.1119 [hep-ph]
  130. 130.
    S. Gieseke, D. Grellscheid, K. Hamilton, A. Papaefstathiou, S. Platzer et al., Herwig++ 2.5 release note. arXiv:1102.1672 [hep-ph]
  131. 131.
    S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225 [hep-ph]
  132. 132.
    W. Beenakker, R. Hopker, M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD. arXiv:hep-ph/9611232 [hep-ph]
  133. 133.
    S. Agostinelli et al. (GEANT4 Collaboration), GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003) ADSCrossRefGoogle Scholar
  134. 134.
    A. Buckley, A. Shilton, M.J. White, Fast supersymmetry phenomenology at the Large Hadron Collider using machine learning techniques. arXiv:1106.4613 [hep-ph]
  135. 135.
    A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, TMVA: toolkit for multivariate data analysis. PoS ACAT, 040 (2007). arXiv:physics/0703039 Google Scholar
  136. 136.
    J.-H. Zhong, R.-S. Huang, S.-C. Lee, R.-S. Huang, S.-C. Lee, A program for the Bayesian neural network in the ROOT framework. Comput. Phys. Commun. 182, 2655–2660 (2011). arXiv:1103.2854 [physics.data-an] ADSCrossRefzbMATHGoogle Scholar
  137. 137.
    G. Aad et al. (ATLAS Collaboration), Search for squarks and gluinos using final states with jets and missing transverse momentum with the atlas detector in \(\sqrt{s}\) = 7 tev proton–proton collisions. Tech. rep., CERN, Geneva, Mar (2012). http://cdsweb.cern.ch/record/1432199
  138. 138.
    S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry with the razor variables at cms. http://cdsweb.cern.ch/record/1430715
  139. 139.
    G. Aad et al. (ATLAS Collaboration), Combination of Higgs boson searches with up to 4.9 fb−1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC. Tech. Rep. ATLAS-CONF-2011-163, CERN, Geneva, Dec (2011). http://cdsweb.cern.ch/record/1406358
  140. 140.
    S. Chatrchyan et al. (CMS Collaboration), Combination of sm Higgs searches. http://cdsweb.cern.ch/record/1406347
  141. 141.
    S. Chatrchyan et al. (CMS Collaboration), Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt{s} = 7\) TeV. arXiv:1202.1488 [hep-ex]
  142. 142.
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results, and dark matter. Phys. Rev. D 85, 075001 (2012). arXiv:1112.3645 [hep-ph] ADSGoogle Scholar
  143. 143.
    M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology. arXiv:1112.3647 [hep-ph]
  144. 144.
    H. Baer, V. Barger, A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar. arXiv:1202.4038 [hep-ph]
  145. 145.
    A. Azatov, R. Contino, J. Galloway, Model-independent bounds on a light Higgs. arXiv:1202.3415 [hep-ph]
  146. 146.
    A. Hoecker, The hadronic contribution to the muon anomalous magnetic moment and to the running electromagnetic fine structure constant at MZ—overview and latest results. Nucl. Phys. Proc. Suppl. 218, 189–200 (2011). arXiv:1012.0055 [hep-ph] ADSCrossRefGoogle Scholar
  147. 147.
    T. Goecke, C.S. Fischer, R. Williams, Hadronic light-by-light scattering in the muon g-2: a Dyson–Schwinger equation approach. Phys. Rev. D 83, 094006 (2011). arXiv:1012.3886 [hep-ph] ADSGoogle Scholar
  148. 148.
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, (g−2)μ and alpha(\(M_{Z}^{2}\)) re-evaluated using new precise data. J. Phys. G 38, 085003 (2011). arXiv:1105.3149 [hep-ph] ADSCrossRefGoogle Scholar
  149. 149.
    S. Bodenstein, C. Dominguez, K. Schilcher, Hadronic contribution to the muon g-2: a theoretical determination. Phys. Rev. D 85, 014029 (2012). arXiv:1106.0427 [hep-ph] ADSGoogle Scholar
  150. 150.
    T. Goecke, C.S. Fischer, R. Williams, Hadronic contribution to the muon g-2: a Dyson–Schwinger perspective. arXiv:1111.0990 [hep-ph]
  151. 151.
    G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B (2012). arXiv:1207.7214 [hep-ex]
  152. 152.
    S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B (2012). arXiv:1207.7235 [hep-ex]

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Csaba Balázs
    • 1
    • 2
    • 3
  • Andy Buckley
    • 4
  • Daniel Carter
    • 1
    • 2
  • Benjamin Farmer
    • 1
    • 2
    Email author
  • Martin White
    • 5
    • 6
  1. 1.School of PhysicsMonash UniversityMelbourneAustralia
  2. 2.ARC Centre of Excellence for Particle Physics at the Tera-scaleMonash UniversityMelbourneAustralia
  3. 3.Monash Centre for AstrophysicsMonash UniversityMelbourneAustralia
  4. 4.School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  5. 5.School of PhysicsThe University of MelbourneMelbourneAustralia
  6. 6.ARC Centre of Excellence for Particle Physics at the Tera-scaleThe University of MelbourneMelbourneAustralia

Personalised recommendations