The European Physical Journal C

, 73:2553 | Cite as

Hamiltonian formalism of general bimetric gravity

  • Josef Klusoň
Regular Article - Theoretical Physics


We perform a Hamiltonian analysis of general bimetric gravity. We determine the four first class constraints that are generators of the diagonal diffeomorphism. We further analyze the remaining constraints and we present evidence that these constraints should be second class constraints in order to have a theory with the Hamiltonian constraint as the first class constraint.


Ghost Poisson Bracket Characteristic Polynomial Canonical Variable Minimal Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Grant agency of the Czech Republic under the grant P201/12/G028.


  1. 1.
    C.J. Isham, A. Salam, J.A. Strathdee, F-dominance of gravity. Phys. Rev. D 3, 867 (1971) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    S.F. Hassan, A. Schmidt-May, M. von Strauss, Bimetric theory and partial masslessness with Lanczos-Lovelock terms in arbitrary dimensions. arXiv:1212.4525 [hep-th]
  3. 3.
    S.F. Hassan, A. Schmidt-May, M. von Strauss, On consistent theories of massive spin-2 fields coupled to gravity. arXiv:1208.1515 [hep-th]
  4. 4.
    K. Nomura, J. Soda, When is multimetric gravity ghost-free? Phys. Rev. D 86, 084052 (2012). arXiv:1207.3637 [hep-th] ADSCrossRefGoogle Scholar
  5. 5.
    V. Baccetti, P. Martin-Moruno, M. Visser, Null energy condition violations in bimetric gravity. J. High Energy Phys. 1208, 148 (2012). arXiv:1206.3814 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    V. Baccetti, P. Martin-Moruno, M. Visser, Massive gravity from bimetric gravity. Class. Quantum Gravity 30, 015004 (2013). arXiv:1205.2158 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M. Banados, S. Theisen, Three-dimensional massive gravity and the bigravity black hole. J. High Energy Phys. 0911, 033 (2009). arXiv:0909.1163 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    M. Banados, A. Gomberoff, D.C. Rodrigues, C. Skordis, A note on bigravity and dark matter. Phys. Rev. D 79, 063515 (2009). arXiv:0811.1270 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    D. Blas, C. Deffayet, J. Garriga, Global structure of bigravity solutions. Class. Quantum Gravity 23, 1697 (2006). hep-th/0508163 MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    T. Damour, I.I. Kogan, Effective Lagrangians and universality classes of nonlinear bigravity. Phys. Rev. D 66, 104024 (2002). hep-th/0206042 MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    C. de Rham, G. Gabadadze, Generalization of the Fierz-Pauli action. Phys. Rev. D 82, 044020 (2010). arXiv:1007.0443 [hep-th] ADSCrossRefGoogle Scholar
  12. 12.
    C. de Rham, G. Gabadadze, A.J. Tolley, Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011). arXiv:1011.1232 [hep-th] ADSCrossRefGoogle Scholar
  13. 13.
    S.F. Hassan, R.A. Rosen, On non-linear actions for massive gravity. J. High Energy Phys. 1107, 009 (2011). arXiv:1103.6055 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    S.F. Hassan, R.A. Rosen, Resolving the ghost problem in non-linear massive gravity. Phys. Rev. Lett. 108, 041101 (2012). arXiv:1106.3344 [hep-th] ADSCrossRefGoogle Scholar
  15. 15.
    S.F. Hassan, R.A. Rosen, A. Schmidt-May, Ghost-free massive gravity with a general reference metric. J. High Energy Phys. 1202, 026 (2012). arXiv:1109.3230 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J. Kluson, Note about Hamiltonian structure of non-linear massive gravity. J. High Energy Phys. 1201, 013 (2012). arXiv:1109.3052 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    J. Kluson, Hamiltonian analysis of 1+1 dimensional massive gravity. Phys. Rev. D 85, 044010 (2012). arXiv:1110.6158 [hep-th] ADSCrossRefGoogle Scholar
  18. 18.
    A. Golovnev, On the Hamiltonian analysis of non-linear massive gravity. Phys. Lett. B 707, 404 (2012). arXiv:1112.2134 [gr-qc] ADSCrossRefGoogle Scholar
  19. 19.
    J. Kluson, Comments about Hamiltonian formulation of non-linear massive gravity with Stuckelberg fields. J. High Energy Phys. 1206, 170 (2012). arXiv:1112.5267 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J. Kluson, Remark about Hamiltonian formulation of non-linear massive gravity in Stuckelberg formalism. Phys. Rev. D 86, 124005 (2012). arXiv:1202.5899 [hep-th] ADSCrossRefGoogle Scholar
  21. 21.
    J. Kluson, Non-linear massive gravity with additional primary constraint and absence of ghosts. Phys. Rev. D 86, 044024 (2012). arXiv:1204.2957 [hep-th] ADSCrossRefGoogle Scholar
  22. 22.
    J. Kluson, Note about Hamiltonian formalism for general non-linear massive gravity action in Stuckelberg formalism. arXiv:1209.3612 [hep-th]
  23. 23.
    S.F. Hassan, R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity. J. High Energy Phys. 1204, 123 (2012). arXiv:1111.2070 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    S.F. Hassan, A. Schmidt-May, M. von Strauss, Proof of consistency of nonlinear massive gravity in the Stückelberg formulation. Phys. Lett. B 715, 335 (2012). arXiv:1203.5283 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    S.F. Hassan, R.A. Rosen, Bimetric gravity from ghost-free massive gravity. J. High Energy Phys. 1202, 126 (2012). arXiv:1109.3515 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    E. Gourgoulhon, 3+1 formalism and bases of numerical relativity. gr-qc/0703035
  27. 27.
    R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity. gr-qc/0405109
  28. 28.
    M. Chaichian, M. Oksanen, A. Tureanu, Arnowitt-Deser-Misner representation and Hamiltonian analysis of covariant renormalizable gravity. Eur. Phys. J. C 71, 1657 (2011) [Erratum-ibid. C 71, 1736 (2011)]. arXiv:1101.2843 [gr-qc] ADSCrossRefGoogle Scholar
  29. 29.
    J. Kluson, Is bimetric gravity really ghost free? arXiv:1301.3296 [hep-th]
  30. 30.
    S.A. Hojman, K. Kuchar, C. Teitelboim, Geometrodynamics regained. Ann. Phys. 96, 88 (1976) MathSciNetADSCrossRefzbMATHGoogle Scholar
  31. 31.
    J. Kluson, Hamiltonian formalism of particular bimetric gravity model. arXiv:1211.6267 [hep-th]
  32. 32.
    V.O. Soloviev, M.V. Tchichikina, Bigravity in Kuchar’s Hamiltonian formalism. 1. The general case. arXiv:1211.6530 [hep-th]
  33. 33.
    K. Hinterbichler, R.A. Rosen, Interacting spin-2 fields. J. High Energy Phys. 1207, 047 (2012). arXiv:1203.5783 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    V.O. Soloviev, M.V. Tchichikina, Bigravity in Kuchar’s Hamiltonian formalism. 2. The special case. arXiv:1302.5096 [hep-th]
  35. 35.
    M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992). 520 p. zbMATHGoogle Scholar
  36. 36.
    M. Chaichian, N.F. Nelipa, Introduction to Gauge Field Theories. Texts and Monographs in Physics (Springer, Berlin, 1984), p. 332 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations