The European Physical Journal C

, 73:2552 | Cite as

MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle

  • M. Carena
  • S. Heinemeyer
  • O. Stål
  • C. E. M. Wagner
  • G. Weiglein
Regular Article - Theoretical Physics

Abstract

A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known \(m_{h}^{\max}\) scenario, and a modified scenario (\(m_{h}^{\mathrm{mod}}\)), where the light \(\mathcal{CP}\)-even Higgs boson can be interpreted as the LHC signal in large parts of the MA–tanβ plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest \(\mathcal{CP}\)-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of hγγ at large tanβ. We also suggest a τ-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the μ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non-SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form Hhh. Finally, in addition to all the other scenarios where the lightest \(\mathcal{CP}\)-even Higgs is interpreted as the LHC signal, we propose a low-MH scenario, where instead the heavy\(\mathcal{CP}\)-even Higgs boson corresponds to the new state around 125.5 GeV.

Notes

Acknowledgements

We thank C. Acereda Ortiz for discussions on the decay rates of Hhh and Y. Linke for discussions on the \(m_{h}^{\mathrm{mod}}\) and low-MH scenarios. We thank P. Bechtle and T. Stefaniak for discussions on HiggsBounds. This work has been supported by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings, and the Early Universe”. The work of S.H. was partially supported by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. The work of O.S. is supported by the Swedish Research Council (VR) through the Oskar Klein Centre. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    ATLAS Collaboration, ATLAS-CONF-2013-012 Google Scholar
  4. 4.
    CMS Collaboration, CMS-PAS-HIG-2013-001 Google Scholar
  5. 5.
    S.L. Glashow, Nucl. Phys. B 22, 579 (1961) CrossRefGoogle Scholar
  6. 6.
    S. Weinberg, Phys. Rev. Lett. 19, 19 (1967) Google Scholar
  7. 7.
    A. Salam, in Proceedings of the 8th Nobel Symposium, Stockholm, ed. by N. Svartholm (1968) Google Scholar
  8. 8.
    H. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  9. 9.
    H. Haber, G. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  10. 10.
    R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988) CrossRefGoogle Scholar
  11. 11.
    A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173 ADSCrossRefGoogle Scholar
  12. 12.
    S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659 (2006). arXiv:hep-ph/0407244 ADSCrossRefMATHGoogle Scholar
  13. 13.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). arXiv:hep-ph/0412214 ADSCrossRefGoogle Scholar
  14. 14.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  15. 15.
    S. Heinemeyer, O. Stål, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    M. Carena, S. Gori, N. Shah, C.E.M. Wagner, J. High Energy Phys. 1203, 014 (2012). arXiv:1112.3336 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    M. Carena, S. Gori, N. Shah, C.E.M. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 175 (2012). arXiv:1205.5842 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    M. Carena, I. Low, C.E.M. Wagner, J. High Energy Phys. 1208, 060 (2012). arXiv:1206.1082 [hep-ph] ADSCrossRefGoogle Scholar
  19. 19.
    M. Carena, S. Gori, I. Low, N. Shah, C.E.M. Wagner, J. High Energy Phys. (to appear). arXiv:1211.6136 [hep-ph]
  20. 20.
    R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stål, G. Weiglein, L. Zeune, Eur. Phys. J. C 72, 2171 (2012). arXiv:1207.1096 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, L. Zeune, arXiv:1211.1955 [hep-ph]
  22. 22.
    L. Hall, D. Pinner, J. Ruderman, J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. High Energy Phys. 1209, 107 (2012). arXiv:1207.1348 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, Phys. Lett. B 720, 153 (2013). arXiv:1211.4004 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    M. Cahill-Rowley, J. Hewett, A. Ismail, T. Rizzo, Phys. Rev. D 86, 075015 (2012). arXiv:1206.5800 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    S. Akula, P. Nath, G. Peim, Phys. Lett. B 717, 188 (2012). arXiv:1207.1839 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    S. Antusch, L. Calibbi, V. Maurer, M. Monaco, M. Spinrath, J. High Energy Phys. 1301, 187 (2013). arXiv:1207.7236 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    U. Haisch, F. Mahmoudi, J. High Energy Phys. 1301, 061 (2013). arXiv:1210.7806 [hep-ph] ADSCrossRefGoogle Scholar
  32. 32.
    M. Cabrera, J. Casas, R.R. de Austri, arXiv:1212.4821 [hep-ph]
  33. 33.
    R. Gupta, M. Montull, F. Riva, J. High Energy Phys. 1304, 132 (2013). arXiv:1212.5240 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    A. Chakraborty, B. Das, J. Diaz-Cruz, D. Ghosh, S. Moretti, P. Poulose, arXiv:1301.2745 [hep-ph]
  35. 35.
    A. Bottino, N. Fornengo, S. Scopel, Phys. Rev. D 85, 095013 (2012). arXiv:1112.5666 [hep-ph] ADSCrossRefGoogle Scholar
  36. 36.
    M. Drees, Phys. Rev. D 86, 115018 (2012). arXiv:1210.6507 [hep-ph] ADSCrossRefGoogle Scholar
  37. 37.
    R. Barate et al. (LEP Working Group for Higgs boson searches and ALEPH DELPHI and L3 and OPAL Collaborations), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033 ADSCrossRefGoogle Scholar
  38. 38.
    B. Petersen (ATLAS Collaboration), talk given at HCP2012, see: http://kds.kek.jp/materialDisplay.py?contribId=46&sessionId=20&materialId=slides&confId=9237
  39. 39.
  40. 40.
    S. Schael et al., (ALEPH, DELPHI, L3, and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 ADSCrossRefGoogle Scholar
  41. 41.
    M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, arXiv:hep-ph/9912223
  42. 42.
    M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601 (2003). arXiv:hep-ph/0202167 ADSCrossRefGoogle Scholar
  43. 43.
    S. Heinemeyer, W. Hollik, G. Weiglein, J. High Energy Phys. 0006, 009 (2000). arXiv:hep-ph/9909540 ADSCrossRefGoogle Scholar
  44. 44.
    M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 45, 797 (2006). arXiv:hep-ph/0511023 ADSCrossRefGoogle Scholar
  45. 45.
    M. Carena, P. Chankowski, S. Pokorski, C. Wagner, Phys. Lett. B 441, 205 (1998). arXiv:hep-ph/9805349 ADSCrossRefGoogle Scholar
  46. 46.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  47. 47.
    J. Espinosa, I. Navarro, Nucl. Phys. B 615, 82 (2001). arXiv:hep-ph/0104047 ADSCrossRefGoogle Scholar
  48. 48.
    M. Carena, H. Haber, S. Heinemeyer, W. Hollik, C. Wagner, G. Weiglein, Nucl. Phys. B 580, 29 (2000). arXiv:hep-ph/0001002 ADSCrossRefGoogle Scholar
  49. 49.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320 ADSCrossRefMATHGoogle Scholar
  50. 50.
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009); see http://www.feynhiggs.de ADSCrossRefMATHGoogle Scholar
  51. 51.
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  52. 52.
    J. Lee, A. Pilaftsis, M. Carena, S. Choi, M. Drees, J. Ellis, C. Wagner, Comput. Phys. Commun. 156, 283 (2004). arXiv:hep-ph/0307377 ADSCrossRefGoogle Scholar
  53. 53.
    J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Comput. Phys. Commun. 180, 312 (2009). arXiv:0712.2360 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, arXiv:1208.2212 [hep-ph]
  55. 55.
    J. Casas, J. Espinosa, M. Quirós, A. Riotto, Nucl. Phys. B 3, 466 (1995) ADSCrossRefGoogle Scholar
  56. 56.
    J. Casas, J. Espinosa, M. Quirós, A. Riotto, Nucl. Phys. B 439, 466 (1995). arXiv:hep-ph/9407389 ADSCrossRefGoogle Scholar
  57. 57.
    M. Carena, J. Espinosa, M. Quirós, C. Wagner, Phys. Lett. B 355, 209 (1995). arXiv:hep-ph/9504316 ADSCrossRefGoogle Scholar
  58. 58.
    M. Carena, M. Quirós, C. Wagner, Nucl. Phys. B 461, 407 (1996). arXiv:hep-ph/9508343 ADSCrossRefGoogle Scholar
  59. 59.
    S. Martin, Phys. Rev. D 65, 116003 (2002). arXiv:hep-ph/0111209 ADSCrossRefGoogle Scholar
  60. 60.
    S. Martin, Phys. Rev. D 66, 096001 (2002). arXiv:hep-ph/0206136 ADSCrossRefGoogle Scholar
  61. 61.
    S. Martin, Phys. Rev. D 67, 095012 (2003). arXiv:hep-ph/0211366 ADSCrossRefGoogle Scholar
  62. 62.
    S. Martin, Phys. Rev. D 68, 075002 (2003). arXiv:hep-ph/0307101 ADSCrossRefGoogle Scholar
  63. 63.
    S. Martin, Phys. Rev. D 70, 016005 (2004). arXiv:hep-ph/0312092 ADSCrossRefGoogle Scholar
  64. 64.
    S. Martin, Phys. Rev. D 71, 016012 (2005). arXiv:hep-ph/0405022 ADSCrossRefGoogle Scholar
  65. 65.
    S. Martin, Phys. Rev. D 71, 116004 (2005). arXiv:hep-ph/0502168 ADSCrossRefGoogle Scholar
  66. 66.
    S. Martin, D. Robertson, Comput. Phys. Commun. 174, 133 (2006). arXiv:hep-ph/0501132 ADSCrossRefMATHGoogle Scholar
  67. 67.
    S. Martin, Phys. Rev. D 75, 055005 (2007). arXiv:hep-ph/0701051 ADSCrossRefGoogle Scholar
  68. 68.
    R. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Phys. Rev. Lett. 100, 191602 (2008). Phys. Rev. Lett. 101, 039901 (2008). arXiv:0803.0672 [hep-ph] ADSCrossRefGoogle Scholar
  69. 69.
    R. Harlander, P. Kant, L. Mihaila, M. Steinhauser, J. High Energy Phys. 1008, 104 (2010). arXiv:1005.5709 [hep-ph] ADSGoogle Scholar
  70. 70.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 455, 179 (1999). arXiv:hep-ph/9903404 ADSCrossRefGoogle Scholar
  71. 71.
    B. Allanach, A. Djouadi, J. Kneur, W. Porod, P. Slavich, J. High Energy Phys. 0409, 044 (2004). arXiv:hep-ph/0406166 ADSCrossRefGoogle Scholar
  72. 72.
    K. Williams, H. Rzehak, G. Weiglein, Eur. Phys. J. C 71, 1669 (2011). arXiv:1103.1335 [hep-ph] ADSCrossRefGoogle Scholar
  73. 73.
    R. Hempfling, Phys. Rev. D 49, 6168 (1994) ADSCrossRefGoogle Scholar
  74. 74.
    L. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309 ADSCrossRefGoogle Scholar
  75. 75.
    M. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253 ADSCrossRefGoogle Scholar
  76. 76.
    M. Carena, D. Garcia, U. Nierste, C. Wagner, Nucl. Phys. B 577, 577 (2000). arXiv:hep-ph/9912516 Google Scholar
  77. 77.
    H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, Y. Yamada, Phys. Rev. D 62, 055006 (2000). arXiv:hep-ph/9912463 ADSCrossRefGoogle Scholar
  78. 78.
    J. Guasch, P. Häfliger, M. Spira, Phys. Rev. D 68, 115001 (2003). arXiv:hep-ph/0305101 ADSCrossRefGoogle Scholar
  79. 79.
    M. Carena, S. Mrenna, C. Wagner, Phys. Rev. D 60, 075010 (1999). arXiv:hep-ph/9808312 ADSCrossRefGoogle Scholar
  80. 80.
    M. Carena, S. Mrenna, C. Wagner, Phys. Rev. D 62, 055008 (2000). arXiv:hep-ph/9907422 ADSCrossRefGoogle Scholar
  81. 81.
    A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 643, 79 (2002). arXiv:hep-ph/0206101 ADSCrossRefGoogle Scholar
  82. 82.
    G. Degrassi, A. Dedes, P. Slavich, Nucl. Phys. B 672, 144 (2003). arXiv:hep-ph/0305127 ADSCrossRefGoogle Scholar
  83. 83.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114 ADSCrossRefGoogle Scholar
  84. 84.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, arXiv:hep-ph/0506254
  85. 85.
    L. Hofer, U. Nierste, D. Scherer, J. High Energy Phys. 0910, 081 (2009). arXiv:0907.5408 [hep-ph] ADSCrossRefGoogle Scholar
  86. 86.
    D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087 [hep-ph] ADSCrossRefGoogle Scholar
  87. 87.
    D. Noth, M. Spira, J. High Energy Phys. 1106, 084 (2011). arXiv:1001.1935 [hep-ph] ADSCrossRefGoogle Scholar
  88. 88.
    A. Crivellin, C. Greub, Phys. Rev. D 87, 015013 (2013). arXiv:1210.7453 [hep-ph] ADSCrossRefGoogle Scholar
  89. 89.
    S. Gennai et al., Eur. Phys. J. C 52, 383 (2007). arXiv:0704.0619 [hep-ph] ADSCrossRefGoogle Scholar
  90. 90.
    M. Hashemi et al., arXiv:0804.1228 [hep-ph]
  91. 91.
    G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 35, 1 (2004). arXiv:hep-ex/0401026 ADSCrossRefGoogle Scholar
  92. 92.
    Tevatron Electroweak Working Group, the CDF and DØ Collaborations, arXiv:1107.5255 [hep-ex]
  93. 93.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). hep-ph/9704448 ADSCrossRefMATHGoogle Scholar
  94. 94.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. 181, 138 (2010). arXiv:0811.4169 [hep-ph] ADSCrossRefMATHGoogle Scholar
  95. 95.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. 182, 2605 (2011). arXiv:1102.1898 [hep-ph] ADSCrossRefGoogle Scholar
  96. 96.
    P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. Williams, arXiv:1301.2345 [hep-ph]
  97. 97.
    P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. Williams, Manual for HiggsBounds 4.0.0. http://higgsbounds.hepforge.org
  98. 98.
    CMS Collaboration, CMS-PAS-HIG-12-050 Google Scholar
  99. 99.
    G. Aad et al. (ATLAS Collaboration), arXiv:1211.6956 [hep-ex]
  100. 100.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1206, 039 (2012). arXiv:1204.2760 [hep-ex] ADSCrossRefGoogle Scholar
  101. 101.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1207, 143 (2012). arXiv:1205.5736 [hep-ex] ADSCrossRefGoogle Scholar
  102. 102.
    CMS Collaboration, CMS-PAS-HIG-12-045 Google Scholar
  103. 103.
    K. Williams, G. Weiglein, Phys. Lett. B 660, 217 (2008). arXiv:0710.5320 [hep-ph] ADSCrossRefGoogle Scholar
  104. 104.
    M. Bisset, J. Li, N. Kersting, F. Moortgat, S. Moretti, J. High Energy Phys. 0908, 037 (2009). arXiv:0709.1029 [hep-ph] ADSCrossRefGoogle Scholar
  105. 105.
    M. Bisset, F. Moortgat, S. Moretti, Eur. Phys. J. C 30, 419 (2003). arXiv:hep-ph/0303093 ADSCrossRefGoogle Scholar
  106. 106.
    F. Moortgat, S. Abdullin, D. Denegri, arXiv:hep-ph/0112046
  107. 107.
    W. Altmannshofer, M. Carena, N. Shah, F. Yu, arXiv:1211.1976 [hep-ph]
  108. 108.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1302.2892 [hep-ex]
  109. 109.
    M. Carena, S. Gori, A. Juste, A. Menon, C.E.M. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 091 (2012). arXiv:1203.1041 [hep-ph] ADSCrossRefGoogle Scholar
  110. 110.
    A. Djouadi, Phys. Lett. B 435, 101 (1998). arXiv:hep-ph/9806315 ADSCrossRefGoogle Scholar
  111. 111.
    J. Ellis, M. Gaillard, D. Nanopoulos, Nucl. Phys. B 106, 292 (1976) ADSGoogle Scholar
  112. 112.
    M. Shifman, A. Vainshtein, M. Voloshin, V. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979) [Yad. Fiz. 30, 1368 (1979)] Google Scholar
  113. 113.
    K. Blum, R. D’Agnolo, J. Fan, J. High Energy Phys. 1301, 057 (2013). arXiv:1206.5303 [hep-ph] ADSCrossRefGoogle Scholar
  114. 114.
    M. Buckley, D. Hooper, Phys. Rev. D 86, 075008 (2012). arXiv:1207.1445 [hep-ph] ADSCrossRefGoogle Scholar
  115. 115.
    J. Espinosa, C. Grojean, V. Sanz, M. Trott, J. High Energy Phys. 1212, 077 (2012). arXiv:1207.7355 [hep-ph] ADSCrossRefGoogle Scholar
  116. 116.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211802 (2012). arXiv:1208.1447 [hep-ex] ADSCrossRefGoogle Scholar
  117. 117.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211803 (2012). arXiv:1208.2590 [hep-ex] ADSCrossRefGoogle Scholar
  118. 118.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1211, 094 (2012). arXiv:1209.4186 [hep-ex] ADSCrossRefGoogle Scholar
  119. 119.
    G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2237 (2012). arXiv:1208.4305 [hep-ex] ADSCrossRefGoogle Scholar
  120. 120.
    G. Aad et al., arXiv:1209.2102 [hep-ex]
  121. 121.
    G. Aad et al., ATLAS-CONF-2012-166 Google Scholar
  122. 122.
    G. Aad et al., ATLAS-CONF-2012-167 Google Scholar
  123. 123.
    G. Aad et al., ATLAS-CONF-2013-001 Google Scholar
  124. 124.
    G. Aad et al. CMS Collaboration, PAS-SUS-12-023 Google Scholar
  125. 125.
    G. Aad et al., PAS-SUS-12-028 Google Scholar
  126. 126.
    G. Aad et al., PAS-SUS-12-029 Google Scholar
  127. 127.
    G. Aad et al., PAS-SUS-11-030 Google Scholar
  128. 128.
    T. Aaltonen et al. (CDF Collaboration), J. High Energy Phys. 1210, 158 (2012). arXiv:1203.4171 [hep-ex] ADSCrossRefGoogle Scholar
  129. 129.
    V. Abazov et al. (DØ Collaboration), Phys. Lett. B 665, 1 (2008). arXiv:0803.2263 [hep-ex] ADSCrossRefGoogle Scholar
  130. 130.
    J.-J. Cao, Z.-X. Heng, J. Yang, Y.-M. Zhang, J.-Y. Zhu, J. High Energy Phys. 1203, 086 (2012). arXiv:1202.5821 [hep-ph] ADSCrossRefGoogle Scholar
  131. 131.
    K. Hagiwara, J. Lee, J. Nakamura, J. High Energy Phys. 1210, 002 (2012). arXiv:1207.0802 [hep-ph] ADSCrossRefGoogle Scholar
  132. 132.
    G. Giudice, P. Paradisi, A. Strumia, J. High Energy Phys. 1210, 186 (2012). arXiv:1207.6393 [hep-ph] ADSCrossRefGoogle Scholar
  133. 133.
    M. Ajaib, I. Gogoladze, Q. Shafi, Phys. Rev. D 86, 095028 (2012). arXiv:1207.7068 [hep-ph] ADSCrossRefGoogle Scholar
  134. 134.
    A. Dabelstein, Nucl. Phys. B 456, 25 (1995). arXiv:hep-ph/9503443 ADSCrossRefGoogle Scholar
  135. 135.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139 (2000). arXiv:hep-ph/0003022 ADSCrossRefGoogle Scholar
  136. 136.
    J. Casas, A. Lleyda, C. Muñoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294 ADSCrossRefGoogle Scholar
  137. 137.
    A. Kusenko, P. Langacker, G. Segre, Phys. Rev. D 54, 5824 (1996). arXiv:hep-ph/9602414 ADSCrossRefGoogle Scholar
  138. 138.
    J. Hisano, S. Sugiyama, Phys. Lett. B 696, 92 (2011) [Erratum-ibid., B 719, 472 (2013)]. arXiv:1011.0260 [hep-ph] ADSCrossRefGoogle Scholar
  139. 139.
    W. Hollik, Priv. communication Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • M. Carena
    • 1
    • 2
  • S. Heinemeyer
    • 3
  • O. Stål
    • 4
  • C. E. M. Wagner
    • 2
    • 5
  • G. Weiglein
    • 6
  1. 1.Theoretical Physics DepartmentFermilabBataviaUSA
  2. 2.Enrico Fermi Institute and Kavli Institute for Cosmological Physics, Department of Physicsthe University of ChicagoChicagoUSA
  3. 3.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  4. 4.The Oskar Klein Centre, Department of PhysicsStockholm UniversityStockholmSweden
  5. 5.HEP DivisionArgonne Natl. Lab.ArgonneUSA
  6. 6.DESYHamburgGermany

Personalised recommendations