Advertisement

The European Physical Journal C

, 73:2549 | Cite as

Massive gravity with N=1 local supersymmetry

  • O. MalaebEmail author
Letter

Abstract

A consistent theory of massive gravity, where the graviton acquires mass by spontaneously breaking diffeomorphism invariance, is now well established. We supersymmetrize this construction using N=1 fields. Coupling to N=1 supergravity is done by applying the rules of tensor calculus to construct an action invariant under local N=1 supersymmetry. The supersymmetric action is shown, at the quadratic level, to be free of ghosts and have as its spectrum a massive graviton, two gravitinos (with different masses) and a massive vector.

Keywords

Ghost Vector Multiplet Massive Gravity Graviton Mass Bosonic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank Professor Ali Chamseddine for suggesting the problem and for his many helpful discussions on the subject. I would like to thank the American University of Beirut (Faculty of Science) for support.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    H. van Dam, M.J.G. Veltman, Massive and massless Yang–Mills and gravitational fields. Nucl. Phys. B 22, 397 (1970) ADSCrossRefGoogle Scholar
  2. 2.
    V.I. Zakharov, Linearized gravitation theory and the graviton mass. JETP Lett. 12, 312 (1970) ADSGoogle Scholar
  3. 3.
    M. Fierz, W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    D.G. Boulware, S. Deser, Can gravity have a finite range? Phys. Rev. D 6, 3368 (1972) ADSCrossRefGoogle Scholar
  5. 5.
    A.I. Vainshtein, To the problem of nonvanishing graviton mass. Phys. Lett. B 39, 393 (1972) ADSCrossRefGoogle Scholar
  6. 6.
    C.J. Isham, A. Salam, J.A. Strathdee, F-dominance of gravity. Phys. Rev. D 3, 867 (1971) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A.H. Chamseddine, A. Salam, J.A. Strathdee, Strong gravity and supersymmetry. Nucl. Phys. B 136, 248 (1978) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    G.R. Dvali, G. Gabadadze, M. Porrati, 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    N. Arkani-Hamed, H. Georgi, M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space. Ann. Phys. 305, 96 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    W. Siegel, Hidden gravity in open-string field theory. Phys. Rev. D 49, 4144 (1994) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    G. ’t Hooft, Unitarity in the Brout–Englert–Higgs mechanism for gravity, arXiv:0708.3184 (2007)
  12. 12.
    Z. Kakushadze, Massless limit of gravitational Higgs mechanism. Int. J. Geom. Methods Mod. Phys. 05, 157 (2008) MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Chamseddine, V. Mukhanov, Higgs for graviton: simple and elegant solution. J. High Energy Phys. 08, 11 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    L. Alberte, A. Chamseddine, V. Mukhanov, Massive gravity: resolving the puzzle. J. High Energy Phys. 12, 23 (2010) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A. Chamseddine, V. Mukhanov, Massive gravity simplified: a quadratic action. J. High Energy Phys. 08, 91 (2011) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    C. de Rham, G. Gabadadze, Generalization of the Fierz–Pauli action. Phys. Rev. D 82, 4 (2010) Google Scholar
  17. 17.
    C. de Rham, G. Gabadadze, A.J. Tolley, Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    S.F. Hassan, R.A. Rosen, Resolving the ghost problem in nonlinear massive gravity. Phys. Rev. Lett. 108(108), 041101 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    S.F. Hassan, R.A. Rosen, A. Schmidt-May, Ghost-free massive gravity with a general reference metric. J. High Energy Phys. 02, 026 (2012) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    S. Deser, A. Waldron, Acausality of massive gravity. Phys. Rev. Lett. 110, 111101 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    J. Wess, J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, 1992) Google Scholar
  22. 22.
    O. Malaeb, Supersymmetrizing massive gravity. Phys. Rev. D 88, 025002 (2013). doi: 10:1103/PhysRevD.88.025002 ADSCrossRefGoogle Scholar
  23. 23.
    E. Cremmer, S. Ferrara, L. Girardello, A. Van Proeyen, Yang–Mills theories with local supersymmetry: Lagrangian, transformation laws and super-Higgs effect. Nucl. Phys. B 212, 413 (1983) ADSCrossRefGoogle Scholar
  24. 24.
    P. Nath, R. Arnowitt, A. Chamseddine, Applied N=1 Supergravity (World Scientific, Singapore, 1984) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Physics DepartmentAmerican University of BeirutBeirutLebanon

Personalised recommendations