Advertisement

The role of the Seiberg–Witten field redefinition in renormalization of noncommutative chiral electrodynamics

  • Maja Burić
  • Duško Latas
  • Biljana Nikolić
  • Voja RadovanovićEmail author
Regular Article - Theoretical Physics

Abstract

It has been conjectured in the literature that renormalizability of the θ-expanded noncommutative gauge theories improves when one takes into account full nonuniqueness of the Seiberg–Witten expansion which relates noncommutative (‘high-energy’) with commutative (‘low-energy’) fields. In order to check this conjecture we analyze renormalizability of the θ-expanded noncommutative chiral electrodynamics by quantizing the action which contains all terms implied by this nonuniqueness. After renormalization we arrive at a different theory, characterized by different relations between the coupling constants: this means that the θ-expanded noncommutative chiral electrodynamics is not renormalizable.

Keywords

Gauge Theory Star Product Noncommutative Space Bare Coupling Noncommutative Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development under Grant No. ON171031.

References

  1. 1.
    H.S. Snyder, Phys. Rev. 71, 38 (1947) ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Minwalla, M. Van Raamsdonk, N. Seiberg, J. High Energy Phys. 0002, 020 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    M. Hayakawa, Phys. Lett. B 478, 394 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Matusis, L. Susskind, N. Toumbas, J. High Energy Phys. 0012, 002 (2000) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. Van Raamsdonk, N. Seiberg, J. High Energy Phys. 0003, 035 (2000) CrossRefGoogle Scholar
  6. 6.
    A. Armoni, Nucl. Phys. B 593, 229 (2001) MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    N. Seiberg, E. Witten, J. High Energy Phys. 09, 032 (1999) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 16, 161 (2000) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    B. Jurco, L. Moller, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 21, 383 (2001) MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    P. Schupp, J. Trampetic, J. Wess, G. Raffelt, Eur. Phys. J. C 36, 405 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    K. Ulker, B. Yapiskan, Phys. Rev. D 77, 065006 (2008) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    P. Aschieri, L. Castellani, J. High Energy Phys. 1207, 184 (2012) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    T. Asakawa, I. Kishimoto, J. High Energy Phys. 9911, 024 (1999) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda, R. Wulkenhaar, J. High Energy Phys. 06, 013 (2001) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    M. Buric, D. Latas, V. Radovanovic, J. High Energy Phys. 0602, 046 (2006) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    D. Latas, V. Radovanovic, J. Trampetic, Phys. Rev. D 76, 085006 (2007) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    M. Buric, V. Radovanovic, J. Trampetic, J. High Energy Phys. 0703, 030 (2007) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    R. Wulkenhaar, J. High Energy Phys. 0203, 024 (2002) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Buric, V. Radovanovic, Class. Quantum Gravity 22, 525 (2005) MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Buric, D. Latas, V. Radovanovic, J. Trampetic, Phys. Rev. D 77, 045031 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    M. Buric, D. Latas, V. Radovanovic, J. Trampetic, Phys. Rev. D 83, 045023 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    C.P. Martin, C. Tamarit, Phys. Rev. D 80, 065023 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    C.P. Martin, C. Tamarit, J. High Energy Phys. 0912, 042 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    C. Tamarit, Phys. Rev. D 81, 025006 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    A. Armoni, Phys. Lett. B 704, 627 (2011) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    R. Banerjee, S. Ghosh, Phys. Lett. B 533, 162 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. 27.
    C.P. Martin, Nucl. Phys. B 652, 72 (2003) ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    P. Aschieri, B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 651, 45 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  29. 29.
    J.M. Grimstrup, R. Wulkenhaar, Eur. Phys. J. C 26, 139 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Maja Burić
    • 1
  • Duško Latas
    • 1
  • Biljana Nikolić
    • 1
  • Voja Radovanović
    • 1
    Email author
  1. 1.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations