Advertisement

Lense–Thirring precession in Plebański–Demiański Spacetimes

  • Chandrachur Chakraborty
  • Partha Pratim PradhanEmail author
Regular Article - Theoretical Physics

Abstract

An exact expression of Lense–Thirring precession rate is derived for non-extremal and extremal Plebański–Demiański spacetimes. This formula is used to find the exact Lense–Thirring precession rate in various axisymmetric spacetimes i.e., Kerr–Newman, Kerr–de Sitter etc. We also show that if the Kerr parameter vanishes in the Plebański–Demiański spacetime, the Lense–Thirring precession does not vanish due to the existence of NUT charge. To derive the Lense–Thirring precession rate in the extremal Plebański–Demiański spacetime, we first derive the general extremal condition for Plebański–Demiański spacetimes. This general result could be applied to obtain the extremal limit in any stationary and axisymmetric spacetimes.

Keywords

Black Hole Precession Frequency Outer Horizon Precession Rate Newman Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Prof. Parthasarathi Majumdar for his encouragement and guidance, besides the long blackboard discussions on this topic. One of us (CC) is grateful to the Department of Atomic Energy (DAE, Govt. of India) for the financial assistance.

References

  1. 1.
    R.P. Kerr, Phys. Rev. Lett. 11, 237–238 (1963) MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Plebański, M. Demiański, Ann. Phys. (N. Y.) 98 (1976) Google Scholar
  3. 3.
    S.W. Hawking, S.F. Ross, Phys. Rev. Lett. 75, 3382–3385 (1995) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Lense, H. Thirring, Phys. Z. 19, 156–163 (1918) zbMATHGoogle Scholar
  5. 5.
    N. Straumann, General Relativity with applications to Astrophysics (Springer, Berlin, 2009) Google Scholar
  6. 6.
    C. Chakraborty, P. Majumdar. arXiv:1304.6936 [gr-qc]
  7. 7.
    E. Hackmann, C. Lammerzahl, Phys. Rev. D 85, 044049 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    S. Ramaswamy, A. Sen, J. Math. Phys. (N. Y.) 22, 2612 (1981) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S. Bhattacharya, in Lecture at Conference on Advances in Astroparticle Physics and Cosmology, March 2012, Darjeeling (2012) Google Scholar
  10. 10.
    D. Lynden-Bell, M. Nouri-Zonoz, Rev. Mod. Phys. 70, 427–445 (1998) MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    V. Kagramanova, J. Kunz, E. Hackmann, C. Lämmerzahl, Phys. Rev. D 81, 124044 (2010) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    S. Ramaswamy, A. Sen, Phys. Rev. Lett. 57, 8 (1986) MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Mueller, M.J. Perry, Class. Quantum Grav. 3, 65–69 (1986) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    S. Drasco, S.A. Hughes, Phys. Rev. D 69, 044015 (2004) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    R. Fujita, W. Hikida, Class. Quantum Grav. 26, 135002 (2009) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    C.W. Misner, J. Math. Phys. 4, 924 (1963) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A.H. Taub, Ann. of Maths. 53, 3 (1951) MathSciNetCrossRefGoogle Scholar
  18. 18.
    E. Newman, L. Tamburino, T. Unti, J. Math. Phys. 4, 7 (1963) Google Scholar
  19. 19.
    Y. Li, J. Yang, Y.-L. Li, S.-W. Wei, Y.-X. Liu, Class. Quantum Grav. 28, 225006 (2011) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    P. Pradhan, P. Majumdar, Eur. Phys. J. C 73, 2470 (2013) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Chandrachur Chakraborty
    • 1
  • Partha Pratim Pradhan
    • 2
    Email author
  1. 1.Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Department of PhysicsVivekananda Satabarshiki MahavidyalayaManikparaIndia

Personalised recommendations