Advertisement

Novel symmetries in the modified version of two dimensional Proca theory

  • T. Bhanja
  • D. Shukla
  • R. P. MalikEmail author
Regular Article - Theoretical Physics

Abstract

By exploiting Stueckelberg’s approach, we obtain a gauge theory for the two-dimensional, that is, (1+1)-dimensional (2D) Proca theory and demonstrate that this theory is endowed with, in addition to the usual Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetries, the on-shell nilpotent (anti-)co-BRST symmetries, under which the total gauge-fixing term remains invariant. The anticommutator of the BRST and co-BRST (as well as anti-BRST and anti-co-BRST) symmetries define a unique bosonic symmetry in the theory, under which the ghost part of the Lagrangian density remains invariant. To establish connections of the above symmetries with the Hodge theory, we invoke a pseudo-scalar field in the theory. Ultimately, we demonstrate that the full theory provides a field theoretic example for the Hodge theory where the continuous symmetry transformations provide a physical realization of the de Rham cohomological operators and discrete symmetries of the theory lead to the physical realization of the Hodge duality operation of differential geometry. We also mention the physical implications and utility of our present investigation.

Keywords

Lagrangian Density Symmetry Transformation Ghost Number Hodge Theory Hodge Duality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Discussion with R. Kumar, in the initial stages of our present investigation, is thankfully acknowledged. T.B. is grateful to BHU-fellowship and D.S. thanks UGC, Government of India, New Delhi, for financial support through RFSMS scheme, under which the present investigation has been carried out.

References

  1. 1.
    P.A.M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University Press, New York, 1964) Google Scholar
  2. 2.
    K. Sundermeyer, Constrained Dynamics. Lecture Notes in Physics, vol. 169 (Springer, Berlin, 1982) zbMATHGoogle Scholar
  3. 3.
    H. Ruegg, M. Ruiz-Altaba, Int. J. Mod. Phys. A 19, 3265 (2004) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    T. Eguchi, P.B. Gilkey, A. Hanson, Phys. Rep. 66, 213 (1980) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    S. Mukhi, N. Mukunda, Introduction to Topology, Differential Geometry and Group Theory for Physicists (Wiley Eastern Pvt Ltd., New Delhi, 1990) zbMATHGoogle Scholar
  6. 6.
    K. Nishijima, Czechoslov. J. Phys. 46, 1 (1996) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    K. Nishijima, Prog. Theor. Phys. 80, 897 (1988) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K. Nishijima, Prog. Theor. Phys. 80, 905 (1988) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J.W. van Holten, Phys. Rev. Lett. 64, 2863 (1990) MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Aratyn, J. Math. Phys. 31, 1240 (1990) MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Gupta, R.P. Malik, Eur. Phys. J. C 68, 325 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S. Gupta, R. Kumar, R.P. Malik, Eur. Phys. J. C 65, 311 (2010) ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    R.P. Malik, J. Phys. A, Math. Gen. 33, 2437 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    R.P. Malik, Int. J. Mod. Phys. A 15, 1685 (2000) MathSciNetADSzbMATHGoogle Scholar
  15. 15.
    S. Gupta, R.P. Malik, Eur. Phys. J. C 58, 517 (2008) MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    R.P. Malik, Int. J. Mod. Phys. A 19, 5663 (2004) MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    R.P. Malik, J. Phys. A: Math. Gen. 36, 5095 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    E. Harikumar, R.P. Malik, M. Sivakumar, J. Phys. A: Math. Gen. 33, 7149 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    R.P. Malik, J. Phys. A: Math. Gen. 36, 5095 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. 20.
    R. Kumar, S. Krishna, A. Shukla, R.P. Malik, Europhys. J. C 72, 1980 (2012) ADSGoogle Scholar
  21. 21.
    R. Kumar, S. Krishna, A. Shukla, R.P. Malik. arXiv:1203.5519 [hep-th]
  22. 22.
    R. Kumar, R.P. Malik, Euro. Phys. Lett. 98, 11002 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    R.P. Malik, A. Khare, Ann. Phys. 334, 142 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    R. Kumar, R.P. Malik, Eur. Phys J. C 73, 2514 (2013) CrossRefADSGoogle Scholar
  25. 25.
    R.P. Malik, J. Phys. A: Math. Gen. 34, 4167 (2001) MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. 26.
    R.P. Malik, Mod. Phys. Lett. A 14, 1937 (1999) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    R.P. Malik, J. Phys. A: Math. Gen. 35, 6919 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    R.P. Malik, Int. J. Mod. Phys. A 22, 3521 (2007) MathSciNetADSCrossRefzbMATHGoogle Scholar
  29. 29.
    S. Deser, A. Gomberoff, M. Henneaux, C. Teitelboim, Phys. Lett. B 400, 80 (1997) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Y. Aharonov, S. Popescu, D. Rohrlich, L. Vaidman, Phys. Rev. D 48, 4084 (1993) ADSCrossRefGoogle Scholar
  31. 31.
    V.M. Zhuravlev, D.A. Kornilov, E.P. Savelova, Gen. Relativ. Gravit. 36, 1719 (2004) MathSciNetADSCrossRefzbMATHGoogle Scholar
  32. 32.
    R.P. Malik. arXiv:1306.3128 [hep-th]
  33. 33.
    L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981) ADSCrossRefGoogle Scholar
  34. 34.
    L. Bonora, P. Pasti, M. Tonin, Nuovo Cimento A 63, 353 (1981) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    R. Delbourgo, P.D. Jarvis, J. Phys. A, Math. Gen 15, 611 (1981) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    R. Delbourgo, P.D. Jarvis, G. Thompson, Phys. Lett. B 109, 25 (1982) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    R.P. Malik, Eur. Phys. J. C 45, 513 (2006) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    R.P. Malik, J. Phys. A: Math. Gen. 40, 4877 (2007) MathSciNetADSCrossRefzbMATHGoogle Scholar
  39. 39.
    R.P. Malik, Eur. Phys. J. C 47, 227 (2006) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    R.P. Malik, B.P. Mandal, Eur. Phys. J. C 47, 219 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  41. 41.
    R.P. Malik, Mod. Phys. Lett. A 20, 1767 (2005) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    R.P. Malik, Eur. Phys. J. C 48, 825 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    I.Yu. Karataeva, S.L. Lyakhovich, Nucl. Phys. B 545, 656 (1999) MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. 44.
    S. Gupta, R. Kumar, R.P. Malik. arXiv:1108.1547 [hep-th]
  45. 45.
    S. Gupta, R. Kumar, Mod. Phys. Lett. A 28, 1350011 (2013) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    R.P. Malik et al. (in preparation) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Physics Department, Center of Advanced StudiesBanaras Hindu UniversityVaranasiIndia
  2. 2.DST Center for Interdisciplinary Mathematical Sciences, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations