Advertisement

Analysis of the heavy quarkonium states h c and h b with QCD sum rules

  • Zhi-Gang WangEmail author
Regular Article - Theoretical Physics

Abstract

In this article, we take the tensor currents \(\bar{Q}(x)\sigma_{\mu\nu}Q(x)\) to interpolate the P-wave spin-singlet heavy quarkonium states h Q , and study the masses and decay constants with the Borel sum rules and moments sum rules. The masses and decay constants from the Borel sum rules and moments sum rules are consistent with each other, the masses are also consistent with the experimental data. We can take the decay constants as basic input parameters and study other phenomenological quantities with the three-point correlation functions via the QCD sum rules. The heavy quarkonium states h Q couple potentially to the tensor currents \(\bar {Q}(x)\sigma_{\mu\nu}Q(x)\), and have the quark structure ϵ ijk ξ σ k ζ besides the quark structure \(ik_{2}^{i} \xi^{\dagger}\sigma\cdot(\vec{k}_{1}-\vec{k}_{2})\zeta\). In calculations, we take into account the leading-order, next-to-leading-order perturbative contributions, and the gluon condensate, four-quark condensate contributions in the operator product expansion. The analytical expressions of the perturbative QCD spectral densities have applications in studying the two-body decays of a boson to two fermions with the vertexes σ μν γ 5 and σ μν .

Keywords

Operator Product Expansion Gluon Condensate Perturbative Contribution Borel Parameter Quark Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation, Grant Number 11075053, and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    J.P. Lees et al., Phys. Rev. D 84, 091101 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    I. Adachi et al., Phys. Rev. Lett. 108, 032001 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    C. Baglin et al., Phys. Lett. B 171, 135 (1986) ADSCrossRefGoogle Scholar
  4. 4.
    J. Beringer et al., Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979) ADSCrossRefGoogle Scholar
  6. 6.
    L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985) ADSCrossRefGoogle Scholar
  7. 7.
    S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17, 1 (2002) Google Scholar
  8. 8.
    N. Brambilla, A. Pineda, J. Soto, A. Vairo, Phys. Lett. B 470, 215 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    N. Brambilla, A. Vairo, Phys. Rev. D 62, 094019 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    N. Brambilla, Y. Sumino, A. Vairo, Phys. Rev. D 65, 034001 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Penin, M. Steinhauser, Phys. Lett. B 538, 335 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    N. Brambilla, A. Vairo, Phys. Rev. D 71, 034020 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Penin, V.A. Smirnov, M. Steinhauser, Nucl. Phys. B 716, 303 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    S. Recksiegel, Y. Sumino, Phys. Lett. B 578, 369 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    T.M. Aliev, K. Azizi, M. Savci, Phys. Lett. B 690, 164 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Z.G. Wang, Mod. Phys. Lett. A 26, 2761 (2011) ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    S. Bauberger, M. Bohm, G. Weiglein, F.A. Berends, M. Buza, Nucl. Phys. B, Proc. Suppl. 37, 95 (1994) ADSCrossRefGoogle Scholar
  18. 18.
    S. Bauberger, F.A. Berends, M. Bohm, M. Buza, Nucl. Phys. B 434, 383 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    P. Colangelo, A. Khodjamirian. hep-ph/0010175
  20. 20.
    S. Narison, Phys. Lett. B 706, 412 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    B.L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    K.G. Chetyrkin, J.H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser, C. Sturm, Phys. Rev. D 80, 074010 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    S. Bodenstein, J. Bordes, C.A. Dominguez, J. Penarrocha, K. Schilcher, Phys. Rev. D 83, 074014 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    S. Bodenstein, J. Bordes, C.A. Dominguez, J. Penarrocha, K. Schilcher, Phys. Rev. D 85, 034003 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    B. Dehnadi, A.H. Hoang, V. Mateu, S.M. Zebarjad. arXiv:1102.2264
  26. 26.
    A. Hoang, P. Ruiz-Femenia, Ma. Stahlhofen, J. High Energy Phys. 1210, 188 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel, G.P. Lepage, Phys. Rev. D 82, 034512 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    V.V. Kiselev, Int. J. Mod. Phys. A 11, 3689 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Nucl. Phys. B 569, 473 (2000) ADSCrossRefGoogle Scholar
  30. 30.
    V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Nucl. Phys. B 585, 353 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsNorth China Electric Power UniversityBaodingP.R. China

Personalised recommendations