Advertisement

Fermionic current induced by magnetic flux in compactified cosmic string spacetime

  • E. R. Bezerra de MelloEmail author
  • A. A. Saharian
Regular Article - Theoretical Physics

Abstract

In this paper, we investigate the fermionic current densities induced by a magnetic flux running along the idealized cosmic string in a four-dimensional spacetime, admitting that the coordinate along the string’s axis is compactified. In order to develop this investigation we construct the complete set of fermionic mode functions obeying a general quasiperiodicity condition along the compactified dimension. The vacuum expectation value of the azimuthal current density is decomposed into two parts. The first one corresponds to the uncompactified cosmic string geometry and the second one is the correction induced by the compactification. For the first part we provide a closed expression which includes various special cases previously discussed in the literature. The second part is an odd periodic function of the magnetic flux along the string axis with the period equal to the flux quantum and it is an even function of the magnetic flux enclosed by the string axis. The compactification of the cosmic string axis in combination with the quasiperiodicity condition leads to the nonzero axial current density. The latter is an even periodic function of the magnetic flux along the string axis and an odd periodic function of the magnetic flux enclosed by the string axis. The axial current density vanishes for untwisted and twisted fields in the absence of the magnetic flux enclosed by the string axis. The asymptotic behavior of the vacuum fermionic current is investigated near the string and at large distances from it. In particular, the topological part of the azimuthal current and the axial current are finite on the string’s axis.

Keywords

Magnetic Flux Cosmic String Vacuum Expectation Value Compact Dimension Total Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

ERBM thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for partial financial support.

References

  1. 1.
    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994) CrossRefzbMATHGoogle Scholar
  2. 2.
    V.M. Mostepanenko, N.N. Trunov, The Casimir Effect and Its Applications (Clarendon, Oxford, 1997) Google Scholar
  3. 3.
    K.A. Milton, The Casimir Effect: Physical Manifestation of Zero-Point Energy (World Scientific, Singapore, 2002) Google Scholar
  4. 4.
    M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, Oxford, 2009) CrossRefzbMATHGoogle Scholar
  5. 5.
    D. Dalvit, P. Milonni, D. Roberts, F. da Rosa (eds.), Casimir Physics. Lecture Notes in Physics, vol. 834 (Springer, Berlin, 2011) zbMATHGoogle Scholar
  6. 6.
    E. Elizalde, Phys. Lett. B 516, 143 (2001) MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    C.L. Gardner, Phys. Lett. B 524, 21 (2002) ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    K.A. Milton, Gravit. Cosmol. 9, 66 (2003) ADSzbMATHGoogle Scholar
  9. 9.
    A.A. Saharian, Phys. Rev. D 70, 064026 (2004) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    E. Elizalde, J. Phys. A 39, 6299 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    A.A. Saharian, Phys. Rev. D 74, 124009 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    B. Green, J. Levin, J. High Energy Phys. 11, 096 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    P. Burikham, A. Chatrabhuti, P. Patcharamaneepakorn, K. Pimsamarn, J. High Energy Phys. 07, 013 (2008) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A.R. Zhitnitsky, Phys. Rev. D 86, 045026 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    E.R. Bezerra de Mello, A.A. Saharian, Class. Quantum Gravity 29, 035006 (2012) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    T.W.B. Kibble, Phys. Rep. 67, 183 (1980) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 1994) zbMATHGoogle Scholar
  18. 18.
    V. Berezinski, B. Hnatyk, A. Vilenkin, Phys. Rev. D 64, 043004 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    T. Damour, A. Vilenkin, Phys. Rev. Lett. 85, 3761 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    P. Bhattacharjee, G. Sigl, Phys. Rep. 327, 109 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    S. Sarangi, S.-H. Henry Tye, Phys. Lett. B 536, 185 (2002) ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    E.J. Copeland, R.C. Myers, J. Polchinski, J. High Energy Phys. 06, 013 (2004) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    G. Dvali, A. Vilenkin, J. Cosmol. Astropart. Phys. 03, 010 (2004) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    T.M. Helliwell, D.A. Konkowski, Phys. Rev. D 34, 1918 (1986) ADSCrossRefGoogle Scholar
  25. 25.
    B. Linet, Phys. Rev. D 35, 536 (1987) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    V.P. Frolov, E.M. Serebriany, Phys. Rev. D 35, 3779 (1987) ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Dowker, Phys. Rev. D 36, 3095 (1987) ADSCrossRefGoogle Scholar
  28. 28.
    J.S. Dowker, Phys. Rev. D 36, 3742 (1987) ADSCrossRefGoogle Scholar
  29. 29.
    P.C.W. Davies, V. Sahni, Class. Quantum Gravity 5, 1 (1988) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    A.G. Smith, in The Formation and Evolution of Cosmic Strings, ed. by G.W. Gibbons, S.W. Hawking, T. Vachaspati, Proceedings of the Cambridge Workshop, Cambridge, England, 1989 (Cambridge University Press, Cambridge, 1990) Google Scholar
  31. 31.
    B. Allen, A.C. Ottewill, Phys. Rev. D 42, 2669 (1990) ADSCrossRefGoogle Scholar
  32. 32.
    B. Allen, J.G. Mc Laughlin, A.C. Ottewill, Phys. Rev. D 45, 4486 (1992) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    B. Allen, B.S. Kay, A.C. Ottewill, Phys. Rev. D 53, 6829 (1996) ADSCrossRefGoogle Scholar
  34. 34.
    T. Souradeep, V. Sahni, Phys. Rev. D 46, 1616 (1992) ADSCrossRefGoogle Scholar
  35. 35.
    K. Shiraishi, S. Hirenzaki, Class. Quantum Gravity 9, 2277 (1992) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    V.B. Bezerra, E.R. Bezerra de Mello, Class. Quantum Gravity 11, 457 (1994) MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. 37.
    E.R. Bezerra de Mello, Class. Quantum Gravity 11, 1415 (1994) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    G. Cognola, K. Kirsten, L. Vanzo, Phys. Rev. D 49, 1029 (1994) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    E.S. Moreira Jnr, Nucl. Phys. B 451, 365 (1995) ADSCrossRefGoogle Scholar
  40. 40.
    D. Iellici, Class. Quantum Gravity 14, 3287 (1997) MathSciNetADSCrossRefzbMATHGoogle Scholar
  41. 41.
    N.R. Khusnutdinov, M. Bordag, Phys. Rev. D 59, 064017 (1999) ADSCrossRefGoogle Scholar
  42. 42.
    V.B. Bezerra, N.R. Khusnutdinov, Class. Quantum Gravity 23, 3449 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  43. 43.
    J.S. Dowker, Phys. Rev. D 36, 3742 (1987) ADSCrossRefGoogle Scholar
  44. 44.
    M.E.X. Guimarães, B. Linet, Commun. Math. Phys. 165, 297 (1994) ADSCrossRefzbMATHGoogle Scholar
  45. 45.
    J. Spinelly, E.R. Bezerra de Mello, Class. Quantum Gravity 20, 874 (2003) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    J. Spinelly, E.R. Bezerra de Mello, Int. J. Mod. Phys. A 17, 4375 (2002) ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    J. Spinelly, E.R. Bezerra de Mello, Int. J. Mod. Phys. D 13, 607 (2004) MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    J. Spinelly, E.R. Bezerra de Mello, Nucl. Phys. B, Proc. Suppl. 127, 77 (2004) ADSCrossRefGoogle Scholar
  49. 49.
    J. Spinelly, E.R. Bezerra de Mello, J. High Energy Phys. 09, 005 (2008) MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    M.R. Douglas, S. Kachru, Rev. Mod. Phys. 79, 733 (2007) MathSciNetADSCrossRefzbMATHGoogle Scholar
  51. 51.
    L. Sriramkumar, Class. Quantum Gravity 18, 1015 (2001) ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Yu.A. Sitenko, N.D. Vlasii, Class. Quantum Gravity 26, 195009 (2009) MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    E.R. Bezerra de Mello, Class. Quantum Gravity 27, 095017 (2010) MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    E.R. Bezerra de Mello, V.B. Bezerra, A.A. Saharian, V.M. Bardeghyan, Phys. Rev. D 82, 085033 (2010) ADSCrossRefGoogle Scholar
  55. 55.
    I. Brevik, T. Toverud, Class. Quantum Gravity 12, 1229 (1995) MathSciNetADSCrossRefzbMATHGoogle Scholar
  56. 56.
    E.R. Bezerra de Mello, V.B. Bezerra, A.A. Saharian, A.S. Tarloyan, Phys. Rev. D 74, 025017 (2006) ADSCrossRefGoogle Scholar
  57. 57.
    E.R. Bezerra de Mello, V.B. Bezerra, A.A. Saharian, Phys. Lett. B 645, 245 (2007) ADSCrossRefzbMATHGoogle Scholar
  58. 58.
    E.R. Bezerra de Mello, V.B. Bezerra, A.A. Saharian, A.S. Tarloyan, Phys. Rev. D 78, 105007 (2008) ADSCrossRefGoogle Scholar
  59. 59.
    G. Fucci, K. Kirsten, J. High Energy Phys. 1103, 016 (2011) MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    E.R. Bezerra de Mello, A.A. Saharian, Class. Quantum Gravity 28, 145008 (2011) MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    G. Fucci, K. Kirsten, J. Phys. A 44, 295403 (2011) MathSciNetCrossRefGoogle Scholar
  62. 62.
    E.R. Bezerra de Mello, A.A. Saharian, A.Kh. Grigoryan, J. Phys. A, Math. Theor. 45, 374011 (2012) MathSciNetCrossRefGoogle Scholar
  63. 63.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  64. 64.
    P. de Sousa Gerbert, R. Jackiw, Commun. Math. Phys. 124, 229 (1989) ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    P. de Sousa Gerbert, Phys. Rev. D 40, 1346 (1989) CrossRefGoogle Scholar
  66. 66.
    Yu.A. Sitenko, Ann. Phys. 282, 167 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  67. 67.
    C.G. Beneventano, M. De Francia, K. Kirsten, E.M. Santangelo, Phys. Rev. D 61, 085019 (2000) ADSCrossRefGoogle Scholar
  68. 68.
    M. De Francia, K. Kirsten, Phys. Rev. D 64, 065021 (2001) ADSCrossRefGoogle Scholar
  69. 69.
    S. Bellucci, E.R. Bezerra de Mello, A.A. Saharian, Phys. Rev. D 83, 085017 (2011) ADSCrossRefGoogle Scholar
  70. 70.
    E.R. Bezerra de Mello, F. Moraes, A.A. Saharian, Phys. Rev. D 85, 045016 (2012) ADSCrossRefGoogle Scholar
  71. 71.
    R. Jackiw, A.I. Milstein, S.-Y. Pi, I.S. Terekhov, Phys. Rev. B 80, 033413 (2009) ADSCrossRefGoogle Scholar
  72. 72.
    A.I. Milstein, I.S. Terekhov, Phys. Rev. B 83, 075420 (2011) ADSCrossRefGoogle Scholar
  73. 73.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980) zbMATHGoogle Scholar
  74. 74.
    S. Bellucci, A.A. Saharian, V.M. Bardeghyan, Phys. Rev. D 82, 065011 (2010) ADSCrossRefGoogle Scholar
  75. 75.
    S. Bellucci, A.A. Saharian, H.A. Nersisyan, Phys. Rev. D 88, 024028 (2013) ADSCrossRefGoogle Scholar
  76. 76.
    A.A. Saharian, The Generalized Abel–Plana Formula with Applications to Bessel Functions and Casimir Effect (Yerevan State University Publishing House, Yerevan, 2008). Report No. ICTP/2007/082, arXiv:0708.1187 Google Scholar
  77. 77.
    A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 2 (Gordon and Breach, New York, 1986) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal da Paraíba 58.059-970João PessoaBrazil
  2. 2.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations