Soft confinement in a 3-d spin system

  • K. OdagiriEmail author
  • T. Yanagisawa
Regular Article - Theoretical Physics


We consider a 1+3 dimensional spin system. The spin-wave (magnon) field is described by the O(3) non-linear sigma model with a symmetry-breaking potential. This interacts with a slow spin SU(2) doublet Schrödinger fermion. The interaction is described by a generalized nonperturbative Yukawa coupling, and the self-consistency condition is solved with the aid of a non-relativistic Gribov equation. When the Yukawa coupling is sufficiently strong, the solution exhibits supercriticality and soft confinement, in a way that is quite analogous to Gribov’s light-quark confinement theory.

The solution corresponds to a new type of spin polaron, whose condensation may lead to exotic superconductivity.


Green Function Yukawa Coupling False Vacuum Linear Dispersion Relation Spin Polaron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank H. Asai, H. Eisaki, I. Hase, M. Hashimoto and S. Kawabata for stimulating discussions.


  1. 1.
    V.N. Gribov, Eur. Phys. J. C 10, 71 (1999). arXiv:hep-ph/9807224 MathSciNetADSGoogle Scholar
  2. 2.
    V.N. Gribov, Eur. Phys. J. C 10, 91 (1999). arXiv:hep-ph/9902279 ADSGoogle Scholar
  3. 3.
    V.N. Gribov, Orsay lectures on confinement (I). arXiv:hep-ph/9403218
  4. 4.
    V.N. Gribov, Orsay lectures on confinement (II). arXiv:hep-ph/9407269
  5. 5.
    V.N. Gribov, Orsay lectures on confinement (III). arXiv:hep-ph/9905285
  6. 6.
    Yu.L. Dokshitzer, D.E. Kharzeev. arXiv:hep-ph/0404216
  7. 7.
    A.L. Chernyshev, R.F. Wood, in Models and Methods of High-T c Superconductivity: Some Frontal Aspects, vol. 1, ed. by J.K. Srivastava, S.M. Rao (Nova Science, Hauppauge, 2003), Chap. 11. arXiv:cond-mat/0208541 Google Scholar
  8. 8.
    K.G. Wilson, Phys. Rev. D 10, 2445 (1974) ADSCrossRefGoogle Scholar
  9. 9.
    L.N. Bulaevskii, E.L. Nagaev, D.I. Khomskii, Sov. Phys. JETP 27, 638 (1967) Google Scholar
  10. 10.
    N. Levinson, Kgl. Danske Videnskab. Selskab., Mat.-Fys. Medd. 25(9) (1949) Google Scholar
  11. 11.
    J.M. Jauch, Helv. Phys. Acta 30, 143 (1957) MathSciNetzbMATHGoogle Scholar
  12. 12.
    D. Dagotto, Rev. Mod. Phys. 66, 763 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    D. Scalapino, in High Temperature Superconductivity, Proceedings of the Los Alamos Symposium 1989, ed. by K.S. Bedell, D. Coffey, D.E. Deltzer, D. Pines, J.R. Schrieffer (Addison-Wesley, Redwood City, 1990), p. 314 Google Scholar
  14. 14.
    D.C. Johnston, Adv. Phys. 59, 803 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Electronics and Photonics Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations