Advertisement

Relative locality in a quantum spacetime and the pregeometry of κ-Minkowski

  • Giovanni Amelino-Camelia
  • Valerio Astuti
  • Giacomo RosatiEmail author
Regular Article - Theoretical Physics

Abstract

We develop a description of the much-studied κ-Minkowski noncommutative spacetime, centered on representing on a single Hilbert space not only the κ-Minkowski coordinates, but also the κ-Poincaré symmetry generators and some suitable relativistic-transformation parameters. In this representation the relevant operators act on the kinematical Hilbert space of the covariant formulation of quantum mechanics, which we argue is the natural framework for studying the implications of the step from commuting spacetime coordinates to the κ-Minkowski case, where the spatial coordinates do not commute with the time coordinate. Within this kinematical-Hilbert-space representation we can give a crisp characterization of the “fuzziness” of points in κ-Minkowski spacetime, also allowing us to describe how the same fuzzy point is seen by different relativistic observers. The most striking finding of our analysis is a relativity of spacetime locality in κ-Minkowski. While previous descriptions of relative locality had been formulated exclusively in classical-spacetime setups, our analysis shows how relative locality in a quantum spacetime takes the shape of a dependence of the fuzziness of a spacetime point on the distance at which an observer infers properties of the event that marks the point.

Keywords

Quantum Mechanic Hopf Algebra Relative Locality Minkowski Spacetime Differential Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge conversations with Daniele Oriti and Carlo Rovelli. The work of two of us (GAC and VA) was supported in part by a grant from the John Templeton Foundation. The work of one of us (GR) was supported in part by funds provided by the National Science Center under the agreement DEC-2011/02/A/ST2/00294. One of us (VA) acknowledges the hospitality of the Perimeter Institute for Theoretical Physics during parts of this work.

References

  1. 1.
    S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994) MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Lukierski, H. Ruegg, W.J. Zakrzewski, Ann. Phys. 243, 90 (1995) MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    J. Lukierski, H. Ruegg, A. Nowicki, V.N. Tolstoi, Phys. Lett. B 264, 331 (1991) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    G. Amelino-Camelia, S. Majid, Int. J. Mod. Phys. A 15, 4301 (2000). hep-th/9907110 MathSciNetADSzbMATHGoogle Scholar
  5. 5.
    G. Amelino-Camelia, M. Matassa, F. Mercati, G. Rosati, Phys. Rev. Lett. 106, 071301 (2011). 1006.2126 ADSCrossRefGoogle Scholar
  6. 6.
    G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 84, 084010 (2011). 1101.0931 ADSCrossRefGoogle Scholar
  7. 7.
    G. Amelino-Camelia, G. Gubitosi, A. Marciano, P. Martinetti, F. Mercati, Phys. Lett. B 671, 298 (2009). 0707.1863 MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    L. Freidel, J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. A 23, 2687 (2008). 0706.3658 MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    S.L. Woronowicz, Commun. Math. Phys. 122, 125 (1989) MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Sitarz, Phys. Lett. B 349, 42 (1995) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    S. Majid, J. Geom. Phys. 25, 119 (1998) MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Oeckl, J. Math. Phys. 40, 3588 (1999). math/9807097 MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Majid, R. Oeckl, Commun. Math. Phys. 205, 617 (1999) MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    S. Meljanac, S. Kresic-Juric, Int. J. Mod. Phys. A 26, 3385 (2011). 1004.4647 MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marcianò, R.A. Tacchi, Mod. Phys. Lett. A 22, 1779 (2007). hep-th/0607221 ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Zakrzewski, J. Phys. A, Math. Gen. 27, 2075 (1994) MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    J. Lukierski, H. Ruegg, Phys. Lett. B 329, 189 (1994). hep-th/9310117 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    P. Kosiński, P. Maślanka. hep-th/9411033
  19. 19.
    P. Kosiński, J. Lukierski, P. Maślanka, Phys. Rev. D 62, 025004 (2000). hep-th/9902037 MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    A. Ballesteros, N.R. Bruno, F.J. Herranz, Phys. Lett. B 574, 276 (2003). hep-th/0306089 MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Ballesteros, N.R. Bruno, F.J. Herranz. hep-th/0409295
  22. 22.
    S. Majid, Class. Quantum Gravity 5, 1587 (1988) MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    E.R. Livine, D. Oriti, J. High Energy Phys. 0406, 050 (2004). gr-qc/0405085 MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    A. Agostini, J. Math. Phys. 48, 052305 (2007) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    L. Dabrowski, G. Piacitelli. 1004.5091
  26. 26.
    F. D’andrea, J. Math. Phys. 47, 062105 (2006). hep-th/0503012 MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    S. Ghosh, P. Pal, Phys. Rev. D 75, 105021 (2007). hep-th/0702159 MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    S. Mignemi, Phys. Rev. D 84, 025021 (2011). 1104.0490 ADSCrossRefGoogle Scholar
  29. 29.
    D. Kovacevic, S. Meljanac, J. Phys. A 45, 135208 (2012). 1110.0944 [math-ph] MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    J.J. Halliwell, Phys. Rev. D 64, 04408 (2001). gr-qc/0008046 MathSciNetGoogle Scholar
  31. 31.
    R. Gambini, R.A. Porto, Phys. Rev. D 63, 105014 (2001) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    R. Gambini, R.A. Porto, Phys. Lett. A 294, 129 (2002) ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    M. Reisenberger, C. Rovelli, Phys. Rev. D 65, 125016 (2002). gr-qc/0111016 MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002). gr-qc/0012051. MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. D 12, 299 (2003). hep-th/0204245 MathSciNetADSCrossRefzbMATHGoogle Scholar
  36. 36.
    J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003). gr-qc/0207085 MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    G. Amelino-Camelia, Symmetry 2, 230 (2010). 1003.3942 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Giovanni Amelino-Camelia
    • 1
    • 2
  • Valerio Astuti
    • 1
    • 2
  • Giacomo Rosati
    • 1
    • 2
    • 3
    Email author
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.INFNSez. Roma1RomaItaly
  3. 3.Institute for Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations