Top quark and neutrino composite Higgs bosons

  • Adam SmetanaEmail author
Regular Article - Theoretical Physics


In the context of top-quark condensation models, the top quark alone is too light to saturate the correct value of the electroweak scale by its condensate. Within the seesaw scenario the neutrinos can have their Dirac masses large enough so that their condensates can provide a significant contribution to the value of the electroweak scale. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry. It is mandatory to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that we design a reasonably simplified effective model with two composite Higgs doublets. Additionally, we work with a general number N of right-handed neutrino flavor triplets participating on the seesaw mechanism. There are no experimental constraints limiting this number. The upper limit is set by the model itself. Provided that the condensation scale is of order 1017−18 GeV and the number of right-handed neutrinos is \(\mathcal{O}(100\mbox{--}1000)\), the model predicts masses of additional Higgs bosons below 250 GeV and a suppression of the top-quark Yukawa coupling to the 125 GeV particle at the ∼60 % level of the Standard model value.


Higgs Boson Higgs Doublet Electroweak Symmetry Breaking Renormalization Group Equation Electroweak Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author gratefully acknowledges discussions with J. Hošek and P. Beneš. The author is also grateful for meeting with F. Sannino and M. Lindner and discussing the issue with them. The work was supported by the Research Program MSM6840770029, by the MEIS of Czech Republic LM2011027 and by the project of International Cooperation ATLAS-CERN LA08032. The work was also supported by TJ Balvan Praha.


  1. 1.
    G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., Higgs mass and vacuum stability in the standard model at NNLO. J. High Energy Phys. 1208, 098 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Bednyakov, A.F. Pikelner, V.N. Velizhanin, Higgs Self-Coupling Beta-Function in the Standard Model at Three Loops (2013) Google Scholar
  5. 5.
    K.G. Chetyrkin, M.F. Zoller, β-function for the Higgs self-interaction in the standard model at three-loop level. J. High Energy Phys. 1304, 091 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    J. Hošek, Electroweak SU(2)L×U(1)Y gauge model without Higgs field. CERN-TH-4104/85 (1985) Google Scholar
  7. 7.
    V.A. Miransky, M. Tanabashi, K. Yamawaki, Dynamical electroweak symmetry breaking with large anomalous dimension and t quark condensate. Phys. Lett. B 221, 177 (1989) ADSCrossRefGoogle Scholar
  8. 8.
    W.A. Bardeen, C.T. Hill, M. Lindner, Minimal dynamical symmetry breaking of the standard model. Phys. Rev. D 41, 1647 (1990) ADSCrossRefGoogle Scholar
  9. 9.
    S.P. Martin, Dynamical electroweak symmetry breaking with top quark and neutrino condensates. Phys. Rev. D 44, 2892–2898 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    G. Cvetic, C.S. Kim, Flavor gauge theory, and masses of top and neutrino. Mod. Phys. Lett. A 9, 289–298 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    S. Antusch, J. Kersten, M. Lindner, M. Ratz, Dynamical electroweak symmetry breaking by a neutrino condensate. Nucl. Phys. B 658, 203–216 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    J. Hošek, The Glashow–Weinberg–Salam model without scalar fields. Nucl. Phys. (1982, submitted). Preprint JINR-E2-82-542, submitted to 21st Int. Conf. on High Energy Physics, Paris, France, Jul 26–31 (1982).
  13. 13.
    K. Kimura, H. Munakata, Dynamical condensation in the electroweak theory. KOBE-84-04 (1984) Google Scholar
  14. 14.
    Y. Nagoshi, K. Nakanishi, S. Tanaka, Horizontal gauge interactions as the origin of lepton-quark masses and flavor mixings. Prog. Theor. Phys. 85, 131–140 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    G. Cvetic, C.S. Kim, Renormalization group analysis of Yukawa parameters with one and two Higgs doublets, and flavor gauge theory. Int. J. Mod. Phys. A 9, 1495–1526 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    V.N. Gribov, Higgs and top quark masses in the standard model without elementary Higgs boson. Phys. Lett. B 336, 243–247 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    J.D. Bashford, On a Dynamical Origin for Fermion Generations (2003) Google Scholar
  18. 18.
    T. Brauner, J. Hošek, A Model of Flavors (2004) Google Scholar
  19. 19.
    P. Beneš, T. Brauner, A. Smetana, Dynamical electroweak symmetry breaking due to strong Yukawa interactions. J. Phys. G 36, 115004 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    C. Wetterich, Chiral freedom and electroweak symmetry breaking. Phys. Rev. D 74, 095009 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    J.-M. Schwindt, C. Wetterich, Asymptotically free four-fermion interactions and electroweak symmetry breaking. Phys. Rev. D 81, 055005 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    J. Hošek, Soft Mass Generation (2009) Google Scholar
  23. 23.
    J. Hošek, A model of soft mass generation, in Proceedings of the Workshop in Honor of Toshihide Maskawa’s 70th Birthday and 35th Anniversary of Dynamical Symmetry Breaking in SCGT, ed. by H. Fukaya, M. Harada, M. Tanabashi, K. Yamawaki (World Scientific, Singapore, 2011), pp. 191–197 Google Scholar
  24. 24.
    P. Beneš, J. Hošek, A. Smetana, Masses by Gauge Flavor Dynamics (2011) Google Scholar
  25. 25.
    A. Smetana, Sterile particles from the flavor gauge model of masses. J. High Energy Phys. 1304, 139 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    J.R. Ellis, O. Lebedev, The Seesaw with many right-handed neutrinos. Phys. Lett. B 653, 411–418 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    J. Heeck, Seesaw parametrization for n right-handed neutrinos. Phys. Rev. D 86, 093023 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    M.-T. Eisele, Leptogenesis with many neutrinos. Phys. Rev. D 77, 043510 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    B. Feldstein, W. Klemm, Large mixing angles from many right-handed neutrinos. Phys. Rev. D 85, 053007 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    R.L. Stratonovich, On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416 (1957) ADSzbMATHGoogle Scholar
  31. 31.
    J. Hubbard, Calculation of partition functions. Phys. Rev. Lett. 3, 77–78 (1959) ADSCrossRefGoogle Scholar
  32. 32.
    M.A. Luty, Dynamical electroweak symmetry breaking with two composite Higgs doublets. Phys. Rev. D 41, 2893 (1990) ADSCrossRefGoogle Scholar
  33. 33.
    C.T. Hill, C.N. Leung, S. Rao, Renormalization group fixed points and the Higgs boson spectrum. Nucl. Phys. B 262, 517 (1985) ADSCrossRefGoogle Scholar
  34. 34.
    S. Chatrchyan et al., Search for a light charged Higgs boson in top quark decays in pp collisions at \(\sqrt{s}=7\) TeV. J. High Energy Phys. 1207, 143 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    G. Aad et al., Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \(\sqrt {s}=7\) TeV with the ATLAS detector. J. High Energy Phys. 1206, 039 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rep. 459, 1–241 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher et al., Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1–102 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    G. Aad et al., Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC. ATLAS-CONF-2012-127, ATLAS-COM-CONF-2012-161 (2012) Google Scholar
  39. 39.
    S. Chatrchyan et al., Observation of a new boson with a mass near 125 GeV. CMS-PAS-HIG-12-020 (2012) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Institute of Experimental and Applied PhysicsCzech Technical University in PraguePrague 2Czech Republic

Personalised recommendations