Gravitational collapse of a magnetized fermion gas with finite temperature

  • I. Delgado GasparEmail author
  • A. Pérez Martínez
  • Roberto A. Sussman
  • A. Ulacia Rey
Regular Article - Theoretical Physics


We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein–Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (“point-like”) and anisotropic (“cigar-like”), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m f ∼10−6 and T/m f ∼10−3.


Finite Temperature Compact Object Particle Number Density Initial Shear Anisotropic Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of A.P.M, A.U.R and I.D.G has been supported by Ministerio de Ciencia, Tecnología y Medio Ambiente under the grant CB0407 and the ICTP Office of External Activities through NET-35. A.P.M. acknowledges the hospitality of ICN-UNAM and the financial support of ICyTDF-CLAF fellowship programme. R.A.S. and A.U.R. acknowledge support from the research grant SEP–CONACYT–132132, and the TWAS-CONACYT fellowships.


  1. 1.
    S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983) CrossRefGoogle Scholar
  2. 2.
    S. Chakrabarty, Phys. Rev. D 43, 627 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    S. Chakrabarty, Phys. Rev. D 54, 1306 (1996). hep-ph/9603406 ADSCrossRefGoogle Scholar
  4. 4.
    M. Chaichian, S.S. Masood, C. Montonen, A. Perez Martinez, H. Perez Rojas, Phys. Rev. Lett. 84, 5261 (2000). hep-ph/9911218 ADSCrossRefGoogle Scholar
  5. 5.
    C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001). astro-ph/0011148 ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Felipe, H.J. Mosquera Cuesta, A. Perez Martinez, H. Perez Rojas, Chin. J. Astron. Astrophys. 5, 399 (2005). astro-ph/0207150 ADSCrossRefGoogle Scholar
  7. 7.
    A. Perez Martinez, H. Perez Rojas, H. Mosquera Cuesta, Int. J. Mod. Phys. D 17, 2107 (2008). arXiv:0711.0975 [astro-ph] ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    L. Paulucci, E.J. Ferrer, V. de la Incera, J.E. Horvath, Phys. Rev. D 83, 043009 (2011). arXiv:1010.3041 [astro-ph.HE] ADSCrossRefGoogle Scholar
  9. 9.
    A.P. Martínez, H.P. Rojas, H.J. Mosquera Cuesta, Eur. Phys. J. C 29, 111 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    R.G. Felipe, A.P. Martinez, J. Phys. G 36, 075202 (2009). arXiv:0812.0337 [astro-ph] ADSCrossRefGoogle Scholar
  11. 11.
    E.J. Ferrer, V. de la Incera, J.P. Keith et al., Phys. Rev. C 82, 065802 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    R.G. Felipe, D.M. Paret, A.P. Martinez, Eur. Phys. J. A 47, 1 (2011). arXiv:1003.3254 [astro-ph.HE] ADSCrossRefGoogle Scholar
  13. 13.
    A. Ulacia Rey, A. Perez Martinez, R.A. Sussman, Gen. Relativ. Gravit. 40, 1499 (2008). arXiv:0708.0593 [gr-qc] ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    A. Ulacia Rey, A. Perez Martinez, R.A. Sussman, Int. J. Mod. Phys. D 16, 481 (2007). gr-qc/0605054 ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    D. Manreza Paret, A. Perez Martinez, A. Ulacia Rey, R.A. Sussman, J. Cosmol. Astropart. Phys. 1003, 017 (2010). arXiv:0812.2508 [gr-qc] ADSCrossRefGoogle Scholar
  16. 16.
    H.Y. Chiu, V. Canuto, L. Fassio-Canuto, Phys. Rev. 176, 1438 (1968) ADSCrossRefGoogle Scholar
  17. 17.
    V. Canuto, H.Y. Chiu, Phys. Rev. 173, 1229 (1968) ADSCrossRefGoogle Scholar
  18. 18.
    V. Canuto, H.Y. Chiu, Phys. Rev. 173, 1220 (1968) ADSCrossRefGoogle Scholar
  19. 19.
    V. Canuto, H.Y. Chiu, Phys. Rev. 173, 1210 (1968) ADSCrossRefGoogle Scholar
  20. 20.
    J. Schwinger, Phys. Rev. 82, 664 (1951) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1998) Google Scholar
  22. 22.
    J. Wainwright, G.F.R. Ellis, Dynamical System in Cosmology (Cambridge University Press, Cambridge, 1997) CrossRefGoogle Scholar
  23. 23.
    D. Ebert, K.G. Klimenko, M.A. Vdovichenko, A.S. Vshivtsev, Phys. Rev. D 61, 025005 (2000). hep-ph/9905253 ADSCrossRefGoogle Scholar
  24. 24.
    D. Ebert, K.G. Klimenko, Nucl. Phys. A 728, 203 (2003). hep-ph/0305149 ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    J.O. Andersen. hep-ph/9709331
  26. 26.
    C.O. Dib, O. Espinosa, Nucl. Phys. B 612, 492 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    A. Ayala, A. Sanchez, G. Piccinelli, S. Sahu, Phys. Rev. D 71, 023004 (2005). hep-ph/0412135 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • I. Delgado Gaspar
    • 1
    Email author
  • A. Pérez Martínez
    • 2
  • Roberto A. Sussman
    • 3
  • A. Ulacia Rey
    • 2
    • 3
  1. 1.Instituto de Geofísica y Astronomía (IGA)La HabanaCuba
  2. 2.Instituto de Cibernética, Matemática y Física (ICIMAF)La HabanaCuba
  3. 3.Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (ICN-UNAM)MéxicoMexico

Personalised recommendations