Advertisement

Ricci dark energy in Chern–Simons modified gravity

  • J. G. Silva
  • A. F. SantosEmail author
Regular Article - Theoretical Physics

Abstract

In this work, we have considered the Ricci dark energy model, where the energy density of the universe is proportional to the Ricci scalar curvature, in the dynamic Chern–Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas.

Keywords

Dark Energy Scalar Field Dark Energy Model Friedmann Equation Holographic Dark Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Project FAPEMAT/CNPq No. 685524/2010. J.G. Silva thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

References

  1. 1.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007). arXiv:astro-ph/0603449 ADSCrossRefGoogle Scholar
  2. 2.
    J.K. Adelman-McCarthy et al., Astrophys. J. Suppl. Ser. 175, 297 (2008). arXiv:0707.3413 [astro-ph] ADSCrossRefGoogle Scholar
  3. 3.
    R. Jackiw, S.Y. Pi, Phys. Rev. D 68, 104012 (2003). arXiv:gr-qc/0308071 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J. Polchinski, Superstring Theory and Beyond String Theory, vol. 2 (Cambridge University Press, Cambridge, 1998) zbMATHGoogle Scholar
  5. 5.
    A. Ashtekar, A.P. Balachandran, S. Jo, Int. J. Mod. Phys. A 4, 1493 (1989) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    S. Alexander, N. Yunes, Phys. Rep. 480, 155 (2009). arXiv:0907.2562 [hep-th] MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Yagi, L.C. Stein, N. Yunes, T. Tanaka, arXiv:1302.1918 [gr-qc]
  8. 8.
    T. Shiromizu, K. Tanabe, arXiv:1303.6056 [gr-qc]
  9. 9.
    M. Li, Phys. Lett. B 603, 1 (2004). arXiv:hep-th/0403127 ADSCrossRefGoogle Scholar
  10. 10.
    S.D.H. Hsu, Phys. Lett. B 594, 13 (2004). arXiv:hep-th/0403052 ADSCrossRefGoogle Scholar
  11. 11.
    A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999). arXiv:hep-th/9803132 MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    C. Gao, F. Wu, X. Chen, Y.-G. Shen, Phys. Rev. D 79, 043511 (2009). arXiv:0712.1394 [astro-ph] ADSCrossRefGoogle Scholar
  13. 13.
    D. Grumiller, N. Yunes, Phys. Rev. D 77, 044015 (2008). arXiv:0711.1868 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 2000) zbMATHGoogle Scholar
  15. 15.
    U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Gravity 21, 5609 (2004). arXiv:gr-qc/0411015 MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    S.S. Costa, Mod. Phys. Lett. A 24, 531 (2009). arXiv:0803.4006 [gr-qc] ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    J.C. Fabris, S.V.B. Goncalves, R. de Sa Ribeiro, Gen. Relativ. Gravit. 36, 211 (2004). arXiv:astro-ph/0307028 ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    L.P. Chimento, M.G. Richarte, Phys. Rev. D 84, 123507 (2011). arXiv:1107.4816 [astro-ph.CO] ADSCrossRefGoogle Scholar
  19. 19.
    A. Pasqua, M. Jamil, R. Myrzakulov, B. Majeed, Phys. Scr. 86, 04 (2012). arXiv:1211.0902 [physics.gen-ph] CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations