Advertisement

Distinguishing ‘Higgs’ spin hypotheses using γγ and WW decays

  • John Ellis
  • Ricky Fok
  • Dae Sung Hwang
  • Verónica SanzEmail author
  • Tevong You
Regular Article - Theoretical Physics

Abstract

The new particle X recently discovered by the ATLAS and CMS Collaborations in searches for the Higgs boson has been observed to decay into γγ, ZZ and WW , but its spin and parity, J P , remain a mystery, with J P =0+ and 2+ being open possibilities. We use PYTHIA and Delphes to simulate an analysis of the angular distribution of ggXγγ decays in a full 2012 data set, including realistic background levels. We show that this angular distribution should provide strong discrimination between the possibilities of spin zero and spin two with graviton-like couplings: ∼3σ if a conservative symmetric interpretation of the log-likelihood ratio (LLR) test statistic is used, and ∼6σ if a less conservative asymmetric interpretation is used. The WW and ZZ couplings of the Standard Model Higgs boson and of a 2+ particle with graviton-like couplings are both expected to exhibit custodial symmetry. We simulate the present ATLAS and CMS search strategies for XWW using PYTHIA and Delphes, and show that their efficiencies in the case of a spin-2 particle with graviton-like couplings are a factor ≃1.9 smaller than in the spin-0 case. On the other hand, the ratio of \(X_{2^{+}} \to W W^{\ast}\) and ZZ branching ratios is larger than that in the 0+ case by a factor ≃1.3. We find that the current ATLAS and CMS results for XWW and XZZ decays are compatible with custodial symmetry under both the spin-0 and -2 hypotheses, and that the data expected to become available during 2012 are unlikely to discriminate significantly between these possibilities.

Keywords

Higgs Boson Angular Distribution Extra Dimension Vector Boson Standard Model Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Oliver Buchmüller, Ben Gripaios, Rakhi Mahbubani, Eduard Massó, and Pierre Savard for valuable discussions. The work of J.E. was supported partly by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. The work of D.S.H. was supported partly by the Korea Foundation for International Cooperation of Science & Technology (KICOS) and the Basic Science Research Programme of the National Research Foundation of Korea (2012-0002959). The work of T.Y. was supported by a Graduate Teaching Assistantship from King’s College London. J.E., D.S.H. and V.S. thank CERN for kind hospitality, and T.Y. thanks Prof. T. Kobayashi and the Bilateral International Exchange Program of Kyoto University for kind hospitality.

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    F. Gianotti, Talk on behalf of the ATLAS Collaboration at CERN, 4th July (2012). https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6126
  3. 3.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  4. 4.
    J. Incandela, Talk on behalf of the CMS Collaboration at CERN, 4th July (2012). https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6125
  5. 5.
    L.D. Landau, Dokl. Akad. Nauk Ser. Fiz. 60, 207 (1948) Google Scholar
  6. 6.
    C.-N. Yang, Phys. Rev. 77, 242 (1950) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    J. Ellis, T. You, J. High Energy Phys. 1209, 123 (2012). arXiv:1207.1693 [hep-ph] ADSCrossRefGoogle Scholar
  8. 8.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volanski. arXiv:1202.3144 [hep-ph]
  9. 9.
    A. Azatov, R. Contino, J. Galloway, J. High Energy Phys. 1204, 127 (2012). arXiv:1202.3415 [hep-ph] ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Espinosa, C. Grojean, M. Muhlleitner, M. Trott, arXiv:1202.3697 [hep-ph]
  11. 11.
    P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, arXiv:1203.4254 [hep-ph]
  12. 12.
    T. Li, X. Wan, Y. Wang, S. Zhu, arXiv:1203.5083 [hep-ph]
  13. 13.
    M. Rauch, arXiv:1203.6826 [hep-ph]
  14. 14.
    J. Ellis, T. You, J. High Energy Phys. 1206, 140 (2012). arXiv:1204.0464 [hep-ph] ADSCrossRefGoogle Scholar
  15. 15.
    A. Azatov, R. Contino, D. Del Re, J. Galloway, M. Grassi, S. Rahatlou, arXiv:1204.4817 [hep-ph]
  16. 16.
    M. Klute, R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, arXiv:1205.2699 [hep-ph]
  17. 17.
    J.R. Espinosa, M. Muhlleitner, C. Grojean, M. Trott, arXiv:1205.6790 [hep-ph]
  18. 18.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, arXiv:1206.4201 [hep-ph]
  19. 19.
    M.J. Dolan, C. Englert, M. Spannowsky, arXiv:1206.5001 [hep-ph]
  20. 20.
    J. Chang, K. Cheung, P. Tseng, T. Yuan, arXiv:1206.5853 [hep-ph]
  21. 21.
    S. Chang, C.A. Newby, N. Raj, C. Wanotayaroj, arXiv:1207.0493 [hep-ph]
  22. 22.
    I. Low, J. Lykken, G. Shaughnessy, arXiv:1207.1093 [hep-ph]
  23. 23.
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, arXiv:1207.1344 [hep-ph]
  24. 24.
    P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, arXiv:1207.1347 [hep-ph]
  25. 25.
    M. Montull, F. Riva, arXiv:1207.1716 [hep-ph]
  26. 26.
    J.R. Espinosa, C. Grojean, M. Muhlleitner, M. Trott, arXiv:1207.1717 [hep-ph]
  27. 27.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. Zupan, arXiv:1207.1718 [hep-ph]
  28. 28.
    S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya, J. High Energy Phys. 10, 062 (2012). arXiv:1207.3588 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    F. Bonner, T. Ota, M. Rauch, W. Winter, arXiv:1207.4599 [hep-ph]
  30. 30.
    T. Plehn, M. Rauch, arXiv:1207.6108 [hep-ph]
  31. 31.
    A. Djouadi, arXiv:1208.3436 [hep-ph]
  32. 32.
    B. Batell, S. Gori, L.T. Wang, arXiv:1209.6832 [hep-ph]
  33. 33.
    T. Aaltonen et al. (CDF and D0 Collaborations), arXiv:1207.6436 [hep-ex]
  34. 34.
    TEVNPH Working Group, for the CDF and D0 Collaborations, arXiv:1207.0449 [hep-ex]
  35. 35.
    J. Ellis, D.S. Hwang, V. Sanz, T. You, arXiv:1208.6002 [hep-ph]
  36. 36.
    J.R. Dell’Aquila, C.A. Nelson, Nucl. Phys. B 320, 61 (1989) ADSCrossRefGoogle Scholar
  37. 37.
    J.R. Dell’Aquila, C.A. Nelson, Phys. Rev. D 33, 80 (1986) ADSCrossRefGoogle Scholar
  38. 38.
    J.R. Dell’Aquila, C.A. Nelson, Phys. Rev. D 33, 93 (1986) ADSCrossRefGoogle Scholar
  39. 39.
    J.R. Dell’Aquila, C.A. Nelson, Phys. Rev. D 33, 101 (1986) ADSCrossRefGoogle Scholar
  40. 40.
    J.R. Dell’Aquila, C.A. Nelson, Nucl. Phys. B 320, 86 (1989) ADSCrossRefGoogle Scholar
  41. 41.
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 553, 61 (2003). arXiv:hep-ph/0210077 ADSCrossRefGoogle Scholar
  42. 42.
    K. Odagiri, J. High Energy Phys. 0303, 009 (2003). arXiv:hep-ph/0212215 ADSCrossRefGoogle Scholar
  43. 43.
    C.P. Buszello, I. Fleck, P. Marquard, J.J. van der Bij, Eur. Phys. J. C 32, 209 (2004). arXiv:hep-ph/0212396 ADSCrossRefGoogle Scholar
  44. 44.
    A. Djouadi, Phys. Rep. 457, 1 (2008). arXiv:hep-ph/0503172 ADSCrossRefGoogle Scholar
  45. 45.
    C.P. Buszello, P. Marquard, arXiv:hep-ph/0603209
  46. 46.
    A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Phys. Rev. D 74, 013004 (2006). arXiv:hep-ph/0604011 ADSCrossRefGoogle Scholar
  47. 47.
    P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner, S.D. Rindani, Phys. Rev. Lett. 100, 051801 (2008). arXiv:0707.2878 [hep-ph] ADSCrossRefGoogle Scholar
  48. 48.
    R.M. Godbole, D.J. Miller, M.M. Muhlleitner, J. High Energy Phys. 0712, 031 (2007). arXiv:0708.0458 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    K. Hagiwara, Q. Li, K. Mawatari, J. High Energy Phys. 0907, 101 (2009). arXiv:0905.4314 [hep-ph] ADSCrossRefGoogle Scholar
  50. 50.
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu, Phys. Rev. D 82, 013003 (2010). arXiv:1001.5300 [hep-ph] ADSCrossRefGoogle Scholar
  51. 51.
    C. Englert, C. Hackstein, M. Spannowsky, Phys. Rev. D 82, 114024 (2010). arXiv:1010.0676 [hep-ph] ADSCrossRefGoogle Scholar
  52. 52.
    U. De Sanctis, M. Fabbrichesi, A. Tonero, Phys. Rev. D 84, 015013 (2011). arXiv:1103.1973 [hep-ph] ADSCrossRefGoogle Scholar
  53. 53.
    V. Barger, P. Huang, Phys. Rev. D 84, 093001 (2011). arXiv:1107.4131 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N.V. Tran, A. Whitbeck, arXiv:1208.4018 [hep-ph]
  55. 55.
    R. Boughezal, T.J. LeCompte, F. Petriello, arXiv:1208.4311 [hep-ph]
  56. 56.
    D. Stolarski, R. Vega-Morales, arXiv:1208.4840 [hep-ph]
  57. 57.
    S.Y. Choi, M.M. Muhlleitner, P.M. Zerwas, arXiv:1209.5268 [hep-ph]
  58. 58.
    R. Fok, C. Guimaraes, R. Lewis, V. Sanz, arXiv:1203.2917 [hep-ph]
  59. 59.
    C. Csaki, C. Grojean, H. Murayama, L. Pilo, J. Terning, Phys. Rev. D 69, 055006 (2004). hep-ph/0305237 ADSCrossRefGoogle Scholar
  60. 60.
    T. Gherghetta, A. Pomarol, Nucl. Phys. B 586, 141 (2000). hep-ph/0003129 MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. 61.
    T. Gherghetta, A. Pomarol, Nucl. Phys. B 602, 3 (2001). hep-ph/0012378 ADSzbMATHCrossRefGoogle Scholar
  62. 62.
    L. Randall, V. Sanz, M.D. Schwartz, J. High Energy Phys. 0206, 008 (2002). hep-th/0204038 MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    J. Hirn, V. Sanz, Phys. Rev. D 76, 044022 (2007). hep-ph/0702005 MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    J. Hirn, V. Sanz, Phys. Rev. Lett. 97, 121803 (2006). hep-ph/0606086 ADSCrossRefGoogle Scholar
  65. 65.
    J. Hirn, V. Sanz, J. High Energy Phys. 0703, 100 (2007). hep-ph/0612239 ADSCrossRefGoogle Scholar
  66. 66.
    S. Eidelman et al. (Particle Data Group Collaboration), Phys. Lett. B 592, 1 (2004) ADSCrossRefGoogle Scholar
  67. 67.
    A.L. Fitzpatrick, J. Kaplan, L. Randall, L.-T. Wang, J. High Energy Phys. 0709, 013 (2007). hep-ph/0701150 MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Y. Grossman, M. Neubert, Phys. Lett. B 474, 361 (2000). hep-ph/9912408 MathSciNetADSzbMATHCrossRefGoogle Scholar
  69. 69.
    Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, N.V. Tran, Phys. Rev. D 81, 075022 (2010). arXiv:1001.3396 [hep-ph] ADSCrossRefGoogle Scholar
  70. 70.
    V.D. Barger, G. Bhattacharya, T. Han, B.A. Kniehl, Phys. Rev. D 43, 779 (1991) ADSCrossRefGoogle Scholar
  71. 71.
    M. Dittmar, H. Dreiner, CMS-NOTE-1997-083 Google Scholar
  72. 72.
    M. Dittmar, H.K. Dreiner, Phys. Rev. D 55, 167 (1997). hep-ph/9608317 ADSCrossRefGoogle Scholar
  73. 73.
    J. Ellis, D.S. Hwang, J. High Energy Phys. 1209, 071 (2012). arXiv:1202.6660 [hep-ph] ADSCrossRefGoogle Scholar
  74. 74.
    J. Alwall et al., MadGraph 5: going beyond. J. High Energy Phys. 1106, 128 (2011). arXiv:1106.0522 [hep-ph] ADSCrossRefGoogle Scholar
  75. 75.
    T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 Physics and Manual. J. High Energy Phys. 0605, 026 (2006). hep-ph/0603175 ADSCrossRefGoogle Scholar
  76. 76.
    S. Ovyn, X. Rouby, V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225 [hep-ph]
  77. 77.
    A. Alves. arXiv:1209.1037 [hep-ph]
  78. 78.
    R. Cousins, J. Mumford, J. Tucker, V. Valuev, J. High Energy Phys. 11, 046 (2005) ADSCrossRefGoogle Scholar
  79. 79.
    N.D. Christensen, C. Duhr, FeynRules—Feynman rules made easy. Comput. Phys. Commun. 180, 1614 (2009). arXiv:0806.4194 [hep-ph] ADSCrossRefGoogle Scholar
  80. 80.
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, UFO—the universal FeynRules output. Comput. Phys. Commun. 183, 1201 (2012). arXiv:1108.2040 [hep-ph] ADSCrossRefGoogle Scholar
  81. 81.
    F. Caravaglios, M.L. Mangano, M. Moretti, R. Pittau, Nucl. Phys. B 539, 215 (1999). hep-ph/9807570 ADSCrossRefGoogle Scholar
  82. 82.
    M.L. Mangano, M. Moretti, R. Pittau, Nucl. Phys. B 632, 343 (2002). hep-ph/0108069 ADSCrossRefGoogle Scholar
  83. 83.
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, J. High Energy Phys. 0307, 001 (2003). hep-ph/0206293 ADSCrossRefGoogle Scholar
  84. 84.

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • John Ellis
    • 1
    • 2
  • Ricky Fok
    • 3
  • Dae Sung Hwang
    • 4
  • Verónica Sanz
    • 2
    • 3
    Email author
  • Tevong You
    • 1
  1. 1.Theoretical Particle Physics and Cosmology Group, Physics DepartmentKing’s College LondonLondonUK
  2. 2.TH Division, Physics DepartmentCERNGeneva 23Switzerland
  3. 3.Department of Physics and AstronomyYork UniversityTorontoCanada
  4. 4.Department of PhysicsSejong UniversitySeoulSouth Korea

Personalised recommendations