Radiating Kerr–Newman black hole in f(R) gravity

Regular Article - Theoretical Physics

Abstract

We derive an exact radiating Kerr–Newman like black hole solution, with constant curvature R=R0 imposed, to metricf(R) gravity via complex transformations suggested by Newman–Janis. This generates a geometry which is precisely that of radiating Kerr–Newman–de Sitter/anti-de Sitter with the f(R) gravity term R0 contributing a cosmological-like term. The structure of three horizon-like surfaces, viz. time-like limit surface, apparent horizon, and event horizon, are determined. We demonstrate the existence of an additional cosmological horizon, in f(R) gravity model, apart from the regular black hole horizons that exist in the analogous general relativity case. In particular, the known stationary Kerr–Newman black hole solutions of f(R) gravity and general relativity are retrieved. We find that the time-like limit surface becomes less prolate with R0 thereby affecting the shape of the corresponding ergosphere.

References

  1. 1.
    A. de Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010) ADSGoogle Scholar
  2. 2.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. De Laurentis, S. Capozziello, arXiv:1202.0394 [gr-qc]
  6. 6.
    T. Multamaki, I. Vilja, Phys. Rev. D 74, 064022 (2007) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    T. Multamaki, I. Vilja, Phys. Rev. D 76, 064021 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, J. Cosmol. Astropart. Phys. 0502, 010 (2005) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A. de la Cruz-Dombriz, A.L. Dobado Maroto, Phys. Rev. D 80, 124011 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    L. Sebastiani, S. Zerbini, arXiv:1012.5230 [gr-qc]
  11. 11.
    S.E. Perez Bergliaffa, Y.E.C. de Oliveira Nunes, Phys. Rev. D 84, 084006 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    A. Aghamohammadi, K. Saaidi, M.R. Abolhasani, A. Vajdi, Int. J. Theor. Phys. 49, 709 (2010) CrossRefGoogle Scholar
  13. 13.
    T. Moon, Y.S. Myung, E.J. Son, Gen. Relativ. Gravit. 43, 3079 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    A.M. Nzioki, S. Carloni, R. Goswami, P.K.S. Dunsby, Phys. Rev. D 81, 084028 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    S. Capozziello, A. Stabile, A. Troisi, Class. Quantum Gravity 25, 085004 (2008) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    S. Capozziello, M. de Laurentis, A. Stabile, Class. Quantum Gravity 27, 165008 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    J.A.R. Cembranos, A. de la Cruz-Dombriz, P.J. Romero, arXiv:1109.4519 [gr-qc]
  18. 18.
    A. Larranaga, Pramana J. Phys. 78, 697 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    A. de la Cruz-Dombriz, D. Saez-Gomez, Entropy 14, 1717 (2012) MathSciNetCrossRefGoogle Scholar
  20. 20.
    E.T. Newman, A.I. Janis, J. Math. Phys. 6, 915 (1965) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    S.G. Ghosh, S.D. Maharaj, Phys. Rev. D 85, 124064 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    E.T. Newman, A.I. Janis, J. Math. Phys. 6, 915 (1965) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    R. d’Inverno, Introducing Einstein’s Relativity (Clarendon, Oxford, 1992) MATHGoogle Scholar
  26. 26.
    M. De Laurentis, arXiv:1111.2071 [gr-qc]
  27. 27.
    S.H. Hendi, Gen. Relativ. Gravit. 44, 835 (2012) MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Spacetime (Cambridge University Press, Cambridge, 1973) CrossRefGoogle Scholar
  29. 29.
    B. Carter, in General Relativity, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979) Google Scholar
  30. 30.
    J.W. York Jr., in Quantum Theory of Gravity: Essays in Honor of Sixtieth Birthday of Bryce S. DeWitt, ed. by S. Christensen (Hilger, Bristol, 1984) Google Scholar
  31. 31.
    R.L. Mallett, Phys. Rev. D 33, 2201 (1986) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    B.D. Koberlein, R.L. Mallett, Phys. Rev. D 49, 5111 (1994) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    B.D. Koberlein, Phys. Rev. D 51, 6783 (1995) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    D.-Y. Xu, Class. Quantum Gravity 15, 153 (1998) ADSMATHCrossRefGoogle Scholar
  35. 35.
    D.-Y. Xu, Class. Quantum Gravity 16, 343 (1999) ADSMATHCrossRefGoogle Scholar
  36. 36.
    A.K. Dawood, S.G. Ghosh, Phys. Rev. D 70, 104010 (2003) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Sushant G. Ghosh
    • 1
    • 2
  • Sunil D. Maharaj
    • 1
  • Uma Papnoi
    • 2
  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Centre for Theoretical PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations