Advertisement

Effects of spacetime anisotropy on the galaxy rotation curves

  • Zhe Chang
  • Ming-Hua Li
  • Xin Li
  • Hai-Nan LinEmail author
  • Sai Wang
Regular Article - Theoretical Physics

Abstract

The observations on galaxy rotation curves show significant discrepancies from the Newtonian theory. This issue could be explained by the effect of the anisotropy of the spacetime. Conversely, the spacetime anisotropy could also be constrained by the galaxy rotation curves. Finsler geometry is a kind of intrinsically anisotropic geometry. In this paper, we study the effect of the spacetime anisotropy at galactic scales in the Finsler spacetime. It is found that the Finslerian model has close relations with the Milgrom’s MOND. By performing the best-fit procedure to the galaxy rotation curves, we find that the anisotropic effects of the spacetime become significant when the Newtonian acceleration GM/r 2 is smaller than the critical acceleration a 0. Interestingly, the critical acceleration a 0, although varies between different galaxies, is in the order of magnitude \(cH_{0}/2\pi\sim10^{-10}~\mathrm{m\,s}^{-2}\).

Keywords

Dark Matter Rotation Curve Finsler Space Stellar Disk Critical Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Y.G. Jiang for useful discussions. This work has been funded in part by the National Natural Science Fund of China under Grant No. 11075166 and No. 11147176.

References

  1. 1.
    S. Weinberg, Cosmology (Oxford University Press, New York, 2008) zbMATHGoogle Scholar
  2. 2.
    E. Komatsu, et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    N. Suzuki et al., Astrophys. J. 746, 85 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    B.A. Reid et al., Mon. Not. R. Astron. Soc. 404, 60 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    L. Perivolaropoulos, arXiv:1104.0539
  6. 6.
    A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, H. Ebeling, Astrophys. J. 686, L49 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A. Kashlinsky, F. Atrio-Barandela, H. Ebeling, A. Edge, D. Kocevski, Astrophys. J. 712, L81 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    J.K. Webb et al., Phys. Rev. Lett. 107, 191101 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    M. Tegmark, A. de Oliveira-Costa, A. Hamilton, Phys. Rev. D 68, 123523 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    K. Land, J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    I. Antoniou, L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 1012, 012 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    E.A. Lim, Phys. Rev. D 71, 063504 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    S. Kanno, J. Soda, Phys. Rev. D 74, 063505 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    A. Arianto, F.P. Zen, B.E. Gunara, T Triyanta, S. Supardi, J. High Energy Phys. 09, 048 (2007) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    T.S. Koivisto, D.F. Mota, J. Cosmol. Astropart. Phys. 08, 021 (2008) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    S. Koh, B. Hu, J. Korean Phys. Soc. 60, 1983 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    M. Watanabe, S. Kanno, J. Soda, Phys. Rev. Lett. 102, 191302 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    J. Lee, E. Komatsu, Astrophys. J. 718, 60 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    V.C. Rubin, W.K. Ford, N. Thonnard, Astrophys. J. 238, 471 (1980) ADSCrossRefGoogle Scholar
  20. 20.
    F. Walter, E. Brinks, W.J.G. de Blok, F. Bigiel, R.C. Kennicutt Jr., M.D. Thornley, A.K. Leroy, Astron. J. 136, 2563 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    K.G. Begeman, A.H. Broeils, R.H. Sanders, Mon. Not. R. Astron. Soc. 249, 523 (1991) ADSGoogle Scholar
  22. 22.
    M. Persic, P. Salucci, F. Stel, Mon. Not. R. Astron. Soc. 281, 27 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    L. Chemin, W.J.G. de Blok, G.A. Mamon, Astron. J. 142, 109 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    M. Milgrom, Astrophys. J. 270, 365 (1983) ADSCrossRefGoogle Scholar
  25. 25.
    M. Milgrom, Astrophys. J. 270, 371 (1983) ADSCrossRefGoogle Scholar
  26. 26.
    P. Horava, Phys. Rev. D 79, 084008 (2009) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    P. Horava, J. High Energy Phys. 0903, 020 (2009) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    P. Horava, Phys. Rev. Lett. 102, 161301 (2009) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    V.F. Cardone, N. Radicella, M.L. Ruggiero, M. Capone, Mon. Not. R. Astron. Soc. 406, 1821 (2010) ADSGoogle Scholar
  30. 30.
    V.F. Cardone, M. Capone, N. Radicella, M.L. Ruggiero, Mon. Not. R. Astron. Soc. 423, 141 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry. Graduate Text in Mathematics, vol. 200 (Springer, New York, 2000) zbMATHCrossRefGoogle Scholar
  32. 32.
    H.C. Wang, J. Lond. Math. Soc. s1-22, 5 (1947) CrossRefGoogle Scholar
  33. 33.
    X. Li, Z. Chang, Differ. Geom. Appl. 30, 737 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    G.Yu. Bogoslovsky, Il Nuovo Cimento B 40, 99 (1977) ADSCrossRefGoogle Scholar
  35. 35.
    G.Yu. Bogoslovsky, Il Nuovo Cimento B 40, 116 (1977) ADSCrossRefGoogle Scholar
  36. 36.
    G.Yu. Bogoslovsky, Il Nuovo Cimento B 43, 377 (1978) ADSCrossRefGoogle Scholar
  37. 37.
    J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Rev. D 61, 027503 (1999) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    G.W. Gibbons, J. Gomis, C.N. Pope, Phys. Rev. D 76, 081701 (2007) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    V.A. Kostelecky, Phys. Lett. B 701, 137 (2011) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Z. Chang, S. Wang, Eur. Phys. J. C 72, 2165 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    Z. Chang, S. Wang, Eur. Phys. J. C 73, 2337 (2013) ADSCrossRefGoogle Scholar
  43. 43.
    A.P. Kouretsis, M. Stathakopoulos, P.C. Stavrinos, Phys. Rev. D 79, 104011 (2009) MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Z. Chang, M.-H. Li, S. Wang, arXiv:1303.1596
  45. 45.
    Z. Chang, S. Wang, X. Li, Eur. Phys. J. C 72, 1838 (2012) ADSCrossRefGoogle Scholar
  46. 46.
    Z. Chang, M.-H. Li, X. Li, S. Wang, arXiv:1303.1593
  47. 47.
    X. Li, M.-H. Li, H.-N. Lin, Z. Chang, Mon. Not. R. Astron. Soc. 428, 2939 (2013) ADSCrossRefGoogle Scholar
  48. 48.
    F.A.E. Pirani, in Lectures on General Relativit, Brandeis Summer, Institute in Theoretical Physics, vol. 1 (Prentice-Hall, Englewood Cliffs, 1964), p. 459 Google Scholar
  49. 49.
    S.F. Rutz, Comput. Phys. Commun. 115, 300 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    S.S. Chern, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5, 95 (1948) MathSciNetGoogle Scholar
  51. 51.
    S.S. Chern, in Selected Papers, vol. II, Mathematics: Frontiers and Perspectives, ed. by V.I. Arnol’d (Springer, Heidelberg, 1989), p. 194 Google Scholar
  52. 52.
    C. Pfeifer, M.N.R. Wohlfarth, Phys. Rev. D 85, 064009 (2012) ADSCrossRefGoogle Scholar
  53. 53.
    S.S. Chern, W.H. Chen, K.S. Lam, Lectures on Differential Geometry. Series on University Mathematics, vol. 1 (World Scientific, Beijing, 2006) Google Scholar
  54. 54.
    G. de Vaucouleurs, Handb. Phys. 53, 311 (1959) ADSGoogle Scholar
  55. 55.
    K.C. Freeman, Astrophys. J. 160, 811 (1972) ADSCrossRefGoogle Scholar
  56. 56.
    W.J.G. de Blok, F. Walter, E. Brinks, C. Trachternach, S.-H. Oh, R.C. Kennicutt Jr., Astron. J. 136, 2648 (2008) ADSCrossRefGoogle Scholar
  57. 57.
    J. Mastache, J.L. Cervantes-Cota, A. de la Macorra, Phys. Rev. D 87, 063001 (2013) ADSCrossRefGoogle Scholar
  58. 58.
    V.A. Kostelecky, N. Russell, Rev. Mod. Phys. 83, 11 (2011) ADSCrossRefGoogle Scholar
  59. 59.
    D. Grumiller, Phys. Rev. Lett. 105, 211303 (2010) ADSCrossRefGoogle Scholar
  60. 60.
    H.-N. Lin, M.-H. Li, X. Li, Z. Chang, Mon. Not. R. Astron. Soc. 430, 450 (2013) ADSCrossRefGoogle Scholar
  61. 61.
    G.W. Angus, B. Famaey, H.S. Zhao, Mon. Not. R. Astron. Soc. 371, 138 (2008) ADSCrossRefGoogle Scholar
  62. 62.
    G.W. Angus, H.Y. Shan, H.S. Zhao, B. Famaey, Astrophys. J. 654, L13 (2007) ADSCrossRefGoogle Scholar
  63. 63.
    I. Ferreras, M. Sakellariadou, M.F. Yusaf, Phys. Rev. Lett. 100, 031302 (2008) ADSCrossRefGoogle Scholar
  64. 64.
    I. Ferreras, N.E. Mavromatos, M. Sakellariadou, M.F. Yusaf, Phys. Rev. D 80, 103506 (2009) ADSCrossRefGoogle Scholar
  65. 65.
    I. Ferreras, N.E. Mavromatos, M. Sakellariadou, M.F. Yusaf, Phys. Rev. D 86, 083507 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Zhe Chang
    • 1
    • 2
  • Ming-Hua Li
    • 1
  • Xin Li
    • 1
    • 2
  • Hai-Nan Lin
    • 1
    Email author
  • Sai Wang
    • 1
  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingChina

Personalised recommendations