Quasinormal modes and hidden conformal symmetry in the Reissner–Nordström black hole

  • Yong-Wan Kim
  • Yun Soo MyungEmail author
  • Young-Jai Park
Regular Article - Theoretical Physics


It is shown that the scalar wave equation in the near-horizon limit respects a hidden SL(2, R) invariance in the Reissner–Nordström (RN) black hole spacetimes. We use the SL(2, R) symmetry to determine algebraically the purely imaginary quasinormal frequencies of the RN black hole. We confirm that these are exactly quasinormal modes of scalar perturbation around the near-horizon region of a near-extremal black hole.


Black Hole Event Horizon Gordon Equation Quasinormal Mode Scalar Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank B. Chen and C.-M. Chen for helpful discussions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) through the Center for Quantum Spacetime (CQUeST) of Sogang University with grant number 2005-0049409. Y.S. Myung was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-R1A1A2A10040499). Y.-J. Park was also supported by World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (No. R31-20002).


  1. 1.
    A. Castro, A. Maloney, A. Strominger, Phys. Rev. D 82, 024008 (2010). arXiv:1004.0996 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    C. Krishnan, J. High Energy Phys. 1007, 039 (2010). arXiv:1004.3537 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. Cvetic, F. Larsen, Nucl. Phys. B 506, 107 (1997). hep-th/9706071 MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    M. Cvetic, F. Larsen, J. High Energy Phys. 1202, 122 (2012). arXiv:1106.3341 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    B. Chen, J. Long, Phys. Rev. D 82, 126013 (2010). arXiv:1009.1010 [hep-th] ADSCrossRefGoogle Scholar
  6. 6.
    I. Sachs, S.N. Solodukhin, J. High Energy Phys. 0808, 003 (2008). arXiv:0806.1788 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Y.S. Myung, Y.W. Kim, T. Moon, Y.J. Park, Phys. Rev. D 84, 024044 (2011). arXiv:1105.4205 [hep-th] ADSCrossRefGoogle Scholar
  8. 8.
    Y.S. Myung, Y.-W. Kim, Y.-J. Park, Phys. Rev. D 85, 084007 (2012). arXiv:1201.3964 [hep-th] ADSCrossRefGoogle Scholar
  9. 9.
    S. Bertini, S.L. Cacciatori, D. Klemm, Phys. Rev. D 85, 064018 (2012). arXiv:1106.0999 [hep-th] ADSCrossRefGoogle Scholar
  10. 10.
    C.-M. Chen, J.-R. Sun, J. High Energy Phys. 1008, 034 (2010). arXiv:1004.3963 [hep-th] ADSCrossRefGoogle Scholar
  11. 11.
    T. Ortin, C.S. Shahbazi, Phys. Lett. B 716, 231 (2012). arXiv:1204.5910 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Cvetic, F. Larsen, J. High Energy Phys. 1209, 076 (2012). arXiv:1112.4846 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    H. Li, arXiv:1108.0220 [hep-th]
  14. 14.
    C.-M. Chen, S.P. Kim, I.-C. Lin, J.-R. Sun, M.-F. Wu, Phys. Rev. D 85, 124041 (2012). arXiv:1202.3224 [hep-th] ADSCrossRefGoogle Scholar
  15. 15.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Nucl. Phys. B 500, 75 (1997). hep-th/9702103 MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    R.G. Daghigh, G. Kunstatter, D. Ostapchuk, V. Bagnulo, Class. Quantum Gravity 23, 5101 (2006). gr-qc/0604073 MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    W.T. Kim, J.J. Oh, Phys. Lett. B 514, 155 (2001). hep-th/0105112 MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    S. Hod, Phys. Lett. A 374, 2901 (2010). arXiv:1006.4439 [gr-qc] ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Y.S. Myung, T. Moon, Phys. Rev. D 86, 024006 (2012). arXiv:1204.2116 [hep-th] ADSCrossRefGoogle Scholar
  20. 20.
    V. Cardoso, J.P.S. Lemos, Phys. Rev. D 63, 124015 (2001). gr-qc/0101052 MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    R. Cordero, A. Lopez-Ortega, I. Vega-Acevedo, Gen. Relativ. Gravit. 44, 917 (2012). arXiv:1201.3605 [gr-qc] MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26, 163001 (2009). arXiv:0905.2975 [gr-qc] MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Center for Quantum SpacetimeSogang UniversitySeoulKorea
  2. 2.Institute of Basic Science and School of Computer Aided ScienceInje UniversityGimhaeKorea
  3. 3.Department of Physics and Department of Global Service ManagementSogang UniversitySeoulKorea

Personalised recommendations