Advertisement

Counting muons to probe the neutrino mass spectrum

  • Carolina Lujan-Peschard
  • Giulia Pagliaroli
  • Francesco VissaniEmail author
Regular Article - Theoretical Physics

Abstract

The experimental evidence that θ 13 is large opens new opportunities to identify the neutrino mass spectrum. We outline a possibility to investigate this issue by means of conventional technology. The ideal set-up turns out to be long baseline experiment: the muon neutrino beam, with 1020 protons on target, has an average energy of 6 (8) GeV; the neutrinos, after propagating 6000 (8000) km, are observed by a muon detector of 1 Mton and with a muon energy threshold of 2 GeV. The expected number of muon events is about 1000, and the difference between the two neutrino spectra is sizeable, about 30 %. This allows the identification of the mass spectrum just counting muon tracks. The signal events are well characterized experimentally by their time and direction of arrival, and 2/3 of them are in a region with little atmospheric neutrino background, namely, between 4 GeV and 10 GeV. The distances from CERN to Baikal Lake and from Fermilab to KM3NET, or ANTARES, fit in the ideal range.

Keywords

Atmospheric Neutrino Matter Effect Neutrino Energy Normal Hierarchy Inverted Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank G. Battistoni, A. Capone, R. Coniglione, P. Coyle, G.V. Domogatsky, S. Galatà, M. Goodman, P. Lipari, S. Ragazzi, G. Riccobene, F. Terranova, A. Varaschin, L. Votano and an anonymous Referee of EPJC for useful discussions. FV is grateful to the Organizers and the Participants in the Orca meeting at Paris for precious feedback [58].

References

  1. 1.
    B.T. Cleveland et al., Astrophys. J. 496, 505 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Hirata et al. (Kamiokande-II Collaboration), Phys. Rev. D 44, 2241 (1991) [E-ibid. D 45, 2170 (1992)] ADSCrossRefGoogle Scholar
  3. 3.
    S. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 86, 5651 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    W. Hampel et al. (GALLEX Collaboration), Phys. Lett. B 447, 127 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    J.N. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. C 60, 055801 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    M. Altmann et al. (GNO Collaboration), Phys. Lett. B 616, 174 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Q.R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    C. Arpesella et al. (Borexino Collaboration), Phys. Rev. Lett. 101, 091302 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Fukuda et al. (Kamiokande Collaboration), Phys. Lett. B 335, 237 (1994) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    M. Ambrosio et al. (MACRO Collaboration), Phys. Lett. B 434, 451 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    W.W.M. Allison et al. (Soudan-2 Collaboration), Phys. Lett. B 449, 137 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Ahn et al. (K2K Collaboration), Phys. Rev. Lett. 90, 041801 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    D.G. Michael et al. (MINOS Collaboration), Phys. Rev. Lett. 97, 191801 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    S. Abe et al. (KamLAND Collaboration), Phys. Rev. Lett. 100, 221803 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    N. Agafonova et al. (OPERA Collaboration), Phys. Lett. B 691, 138 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    K. Abe et al. (T2K Collaboration), Phys. Rev. D 85, 031103 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957) ADSGoogle Scholar
  19. 19.
    B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) ADSGoogle Scholar
  20. 20.
    Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962) ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    L. Wolfenstein, Phys. Rev. D 17, 2369 (1978) ADSCrossRefGoogle Scholar
  22. 22.
    S.P. Mikheev, A.Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985) [Yad. Fiz. 42, 1441 (1985)] Google Scholar
  23. 23.
    V.D. Barger, K. Whisnant, S. Pakvasa, R.J.N. Phillips, Phys. Rev. D 22, 2718 (1980) ADSCrossRefGoogle Scholar
  24. 24.
    P. Langacker, J.P. Leveille, J. Sheiman, Phys. Rev. D 27, 1228 (1983) ADSCrossRefGoogle Scholar
  25. 25.
    G.V. Dass, K.V.L. Sarma, Phys. Rev. D 30, 80 (1984) ADSCrossRefGoogle Scholar
  26. 26.
    A.Yu. Smirnov, Neutrino masses and mixing, hep-ph/9611465, presented at the 28 International Conference on High-Energy Physics (ICHEP 96), Warsaw, Poland
  27. 27.
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, Phys. Rev. Lett. 101, 141801 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011). arXiv:1304.0841 ADSCrossRefGoogle Scholar
  29. 29.
    F.P. An et al. (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Abe et al. (Double Chooz Collaboration), Phys. Rev. D 86, 052008 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    See discussion at nuTURN conference, web site. http://nuturn2012.lngs.infn.it/
  33. 33.
    M. Blennow, T. Schwetz, J. High Energy Phys. 1208, 058 (2012) [E.-ibid. 1211, 098 (2012)] ADSCrossRefGoogle Scholar
  34. 34.
    A. Ghosh, T. Thakore, S. Choubey, arXiv:1212.1305 [hep-ph]
  35. 35.
    E.K. Akhmedov, S. Razzaque, A.Yu. Smirnov, arXiv:1205.7071 [hep-ph]
  36. 36.
    B. Bajc, F. Nesti, G. Senjanovic, F. Vissani, in Proceedings of 17th La Thuile conference, ed. by M. Greco. Frascati Physics Series, vol. 30 (2003), pp. 103–143 Google Scholar
  37. 37.
    A. Geiser (MONOLITH Collaboration), Nucl. Instrum. Methods A 472, 464 (2000) CrossRefGoogle Scholar
  38. 38.
    T. Tabarelli de Fatis, Eur. Phys. J. C 24, 43 (2002) ADSCrossRefGoogle Scholar
  39. 39.
    D. Indumathi (INO Collaboration), Pramana 63, 1283 (2004) ADSCrossRefGoogle Scholar
  40. 40.
    N.K. Mondal (INO Collaboration), Pramana 79, 1003 (2012) ADSCrossRefGoogle Scholar
  41. 41.
    G. Battistoni, A. Ferrari, C. Rubbia, P.R. Sala, F. Vissani, hep-ph/0604182
  42. 42.
    J. Tang, W. Winter, J. High Energy Phys. 1202, 028 (2012). arXiv:1110.5908 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    S.K. Agarwalla, P. Hernandez, J. High Energy Phys. 1210, 086 (2012). arXiv:1204.4217 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    K. Dick, M. Freund, P. Huber, M. Lindner, Nucl. Phys. B 588, 101 (2000). hep-ph/0006090 ADSCrossRefGoogle Scholar
  45. 45.
    A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981) ADSCrossRefGoogle Scholar
  46. 46.
    G.L. Fogli et al., Phys. Rev. D 86, 013012 (2012) ADSCrossRefGoogle Scholar
  47. 47.
    S.R. Dugad, F. Vissani, Phys. Lett. B 469, 171 (1999) ADSCrossRefGoogle Scholar
  48. 48.
    P. Lipari, M. Lusignoli, F. Sartogo, Phys. Rev. Lett. 74, 4384 (1995) ADSCrossRefGoogle Scholar
  49. 49.
    C.H. Llewellyn Smith, Phys. Rep. 3, 261 (1972) ADSCrossRefGoogle Scholar
  50. 50.
    L. Alvarez-Ruso, S.K. Singh, M.J. Vicente Vacas, Phys. Rev. C 57, 2693 (1998) ADSCrossRefGoogle Scholar
  51. 51.
    M. Glück, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995) ADSCrossRefGoogle Scholar
  52. 52.
    D.S. Ayres et al. (NOνA Collaboration), hep-ex/0503053. http://www-fnal.nova.gov
  53. 53.
    D.J. Koskinen, Mod. Phys. Lett. A 26, 2899 (2011) ADSCrossRefGoogle Scholar
  54. 54.
  55. 55.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012). Sect. 29 ADSCrossRefGoogle Scholar
  56. 56.
  57. 57.
    S. Kopp, M. Bishai, M. Dierckxsens, M. Diwan, A.R. Erwin, D.A. Harris, D. Indurthy, R. Keisler et al., Nucl. Instrum. Methods A 568, 503 (2006) ADSCrossRefGoogle Scholar
  58. 58.

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Carolina Lujan-Peschard
    • 1
    • 2
  • Giulia Pagliaroli
    • 1
  • Francesco Vissani
    • 1
    • 3
    Email author
  1. 1.INFNLaboratori Nazionali del Gran SassoAssergi (AQ)Italy
  2. 2.Departamento de Fisica, DCeIUniversidad de GuanajuatoLeónMéxico
  3. 3.Gran Sasso Science Institute (INFN)L’AquilaItaly

Personalised recommendations