Advertisement

QCD analysis of Lambda hyperon production in DIS target-fragmentation region

  • Federico Alberto CeccopieriEmail author
  • Davide Mancusi
Regular Article - Theoretical Physics

Abstract

We consider Lambda-hyperon production in the target-fragmentation region of semi-inclusive deep-inelastic scattering within the framework of fracture functions. We present a first attempt to determine the flavour and energy dependences of these non-perturbative distributions through a simultaneous QCD-based fit to available neutral- and charged-current semi-inclusive-DIS cross sections. Predictions based on the resulting nucleon-to-Lambda fracture functions are in good agreement with data and observables not included in the regression. The successful prediction of the Q 2 dependence of the Lambda multiplicity notably represents the first validation of the perturbative framework implied by fracture functions.

Keywords

Transverse Momentum Parton Distribution Fragmentation Function Fracture Function Spectator System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge M. Stratmann and S. Albino for providing us with their fragmentation-function routines. We especially acknowledge D. Naumov for interesting discussions related to backgrounds in Lambda production in DIS and for providing us the neutrino flux parametrisations. We wish to thank the organizers of the Workshop “Strangeness polarization in semi-inclusive and exclusive Lambda production” held in ECT*, Trento, in October 2008 and all the participants for stimulating discussions on this topic. We finally thank Laurent Favart, Dmitry Naumov, Jean-René Cudell and Luca Trentadue for a critical reading of the manuscript prior to submission.

References

  1. 1.
    M. Basile et al., Nuovo Cimento A 66, 129 (1981) ADSCrossRefGoogle Scholar
  2. 2.
    L. Trentadue, G. Veneziano, Phys. Lett. B 323, 201 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) ADSGoogle Scholar
  4. 4.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) Google Scholar
  5. 5.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977) ADSCrossRefGoogle Scholar
  6. 6.
    D. Graudenz, Nucl. Phys. B 432, 351 (1994) ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Collins, Phys. Rev. D 57, 3051 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    M. Grazzini, L. Trentadue, G. Veneziano, Nucl. Phys. B 519, 394 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    J. Levelt, P.J. Mulders, Phys. Rev. D 49, 96 (1994) ADSCrossRefGoogle Scholar
  10. 10.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    E. Konishi, A. Ukawa, G. Veneziano, Nucl. Phys. B 157, 45 (1979) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    D. de Florian, C.A. Garcia Canal, R. Sassot, Nucl. Phys. B 470, 195 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    D. de Florian, R. Sassot, Nucl. Phys. B 488, 367 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    C.C. Chang et al., Phys. Rev. D 27, 2776 (1983) ADSCrossRefGoogle Scholar
  15. 15.
    G.T. Jones et al. (WA21 Collaboration), Z. Phys. C 57, 197 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    M. Arneodo et al. (EMC Collaboration), Z. Phys. C 34, 283 (1987) ADSCrossRefGoogle Scholar
  17. 17.
    M.R. Adams et al. (E665 Collaboration), Z. Phys. C 61, 539 (1994) ADSCrossRefGoogle Scholar
  18. 18.
    A. Airapetian et al. (Hermes Collaboration), Eur. Phys. J. A 47, 113 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    N.M. Agababyan et al. (SKAT Collaboration), Phys. At. Nucl. 70, 1731 (2007) CrossRefGoogle Scholar
  20. 20.
    P. Astier et al. (NOMAD Collaboration), Nucl. Phys. B 621, 3 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    S. Albino, B.A. Kniehl, G. Kramer, Nucl. Phys. B 803, 42 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    M. Glück, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995) ADSCrossRefGoogle Scholar
  23. 23.
    P. Astier et al. (NOMAD Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 515, 800 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    M. Derrick et al. (ZEUS Collaboration), Phys. Lett. B 315, 481 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    T. Ahmed et al. (H1 Collaboration), Nucl. Phys. B 429, 477 (1994) ADSCrossRefGoogle Scholar
  26. 26.
    A.B. Kaidalov, O.I. Piskunova, Z. Phys. C 30, 145 (1986) ADSCrossRefGoogle Scholar
  27. 27.
    M. Osipenko et al. (CLAS Collaboration), Phys. Rev. D 80, 032004 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975) ADSCrossRefGoogle Scholar
  29. 29.
    D. Allasia et al. (WA25 Collaboration), Nucl. Phys. B 224, 1 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    D. Allasia et al. (WA25 Collaboration), Phys. Lett. B 154, 231 (1983) Google Scholar
  31. 31.
    S. Alekhin, S. Kulagin, R. Petti, Phys. Lett. B 675, 433 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Ellis et al., Eur. Phys. J. C 52, 283 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Federico Alberto Ceccopieri
    • 1
    • 2
    Email author
  • Davide Mancusi
    • 1
    • 3
  1. 1.IFPAUniversité de LiègeLiègeBelgium
  2. 2.Université Libre de BruxellesBruxellesBelgium
  3. 3.CEA, Centre de SaclayIRFU/Service de Physique NucléaireGif-sur-YvetteFrance

Personalised recommendations