Advertisement

Dissipation and θ 13 in neutrino oscillations

  • R. L. N. OliveiraEmail author
  • M. M. Guzzo
Regular Article - Theoretical Physics

Abstract

We obtain a complete survival and transition probability involving three neutrino flavors when dissipation effects in vacuum are taken into consideration. In an approach that presents decoherence and relaxation effects, we study the behavior of the probabilities obtained from complete positivity constraints. Making the von Neumann entropy increase in time, many cases can be obtained and studied with the Lindblad master equation with addition of only one or two parameters related to dissipation. New possibilities are obtained when we take into account two decoherence parameters with different magnitudes which are given by reactor and accelerator neutrino oscillation experiments. We also present a model with only one parameter that has an important symmetry property, which can be used when the effective matter potential is important. Furthermore, the dissipation effects can contribute to the appearance of neutrinos that can hide or imitate the θ 13 effects and we study these possibilities showing that dissipative effects have an important role in three-neutrino oscillations.

Keywords

Neutrino Oscillation Relaxation Effect Dissipative Effect Open Quantum System Dissipative Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Autretos, P.S.A. for interesting discussions. This work was supported by the CNPq and FAPESP

References

  1. 1.
    A.M. Gago et al., arXiv:hep-ph/0208166 (2002)
  2. 2.
    G. Barenboim, N.E. Mavromato, J. High Energy Phys. 01, 31 (2005) CrossRefGoogle Scholar
  3. 3.
    D. Morgan et al., Astropart. Phys. 25, 311 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Phys. Rev. D 76, 033006 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Farzan, T. Schwetz, A.Y. Smirnov, J. High Energy Phys. 67, 0807 (2008) Google Scholar
  6. 6.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    V. Gorini, A. Kossakowski, J. Math. Phys. 17, 821 (1976) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    R. Dumcke, H. Sponh, Z. Phys. B 34, 419 (1979) ADSCrossRefGoogle Scholar
  9. 9.
    R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications. Lect. Notes Phys. (Springer, Berlin, 1987) zbMATHGoogle Scholar
  10. 10.
    F. Benatti, R. Floreanini, J. High Energy Phys. 02, 32 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    J. Ellis et al., Nucl. Phys. B 241, 381 (1984) ADSCrossRefGoogle Scholar
  12. 12.
    F. Benatti, R. Florianini, Int. J. Mod. Phys. B 19, 3063 (2005) ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    R.L.N. Oliveira, M.M. Guzzo, Eur. Phys. J. C 69, 493 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    F.P. An et al., Phys. Rev. Lett. 108, 171803 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    C. Cohen-Tannoudji et al., Quantum Mechanics, vol. I (Hermann, Paris, 1977) Google Scholar
  17. 17.
    E.B. Davies, Commun. Math. Phys. 39, 91 (1974) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    K. Kraus, Ann. Phys. 64, 311 (1971) MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    F. Benatti, H. Narnhofer, Lett. Math. Phys. 15, 325 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    E. Lisi, A. Marrone, D. Montanino, Phys. Rev. Lett. 85, 1166 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    K. Eguchi et al., Phys. Rev. Lett. 100, 221803 (2008) CrossRefGoogle Scholar
  22. 22.
    P. Adamson et al., Phys. Rev. Lett. 106, 181801 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    D. Morgan et al., Phys. Lett. B 609, 206 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    P. Adamson et al., Phys. Rev. D 73, 072002 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Instituto de Física Gleb WataghinUniversidade Estadual de CampinasCampinas, São PauloBrazil

Personalised recommendations