Advertisement

Topology of Minimal Walking Technicolor

  • Ed BennettEmail author
  • Biagio Lucini
Regular Article - Theoretical Physics

Abstract

We perform a lattice study of the topological susceptibility and instanton size distribution of the SU(2) gauge theory with two adjoint Dirac fermions (also known as Minimal Walking Technicolor), which is known to be in the conformal window. In the theory deformed with a small mass term, by drawing a comparison with the pure gauge theory, we find that topological observables are decoupled from the fermion dynamics. This provides further evidence for the infrared conformality of the theory. A study of the instanton size distribution shows that this quantity can be used to detect the onset of finite size effects.

Keywords

Gauge Theory Anomalous Dimension Fermion Mass Topological Charge Chiral Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank A. Patella and A. Rago for discussions. This work was done as part of the UKQCD collaboration and the DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and Swansea University. We are indebted to L. Del Debbio, A. Patella, C. Pica and A. Rago, who made available to us the configurations discussed in [38, 39]. E.B. is supported by STFC. B.L. is supported by the Royal Society and by STFC.

References

  1. 1.
    G. Aad et al., Phys. Lett. B (2012). doi: 10.1016/j.physletb.2012.08.020 Google Scholar
  2. 2.
    S. Chatrchyan et al., Phys. Lett. B (2012). doi: 10.1016/j.physletb.2012.08.021 Google Scholar
  3. 3.
    S. Weinberg, Phys. Rev. D 13, 974 (1976). doi: 10.1103/PhysRevD.13.974 ADSCrossRefGoogle Scholar
  4. 4.
    L. Susskind, Phys. Rev. D 20, 2619 (1979). doi: 10.1103/PhysRevD.20.2619 ADSCrossRefGoogle Scholar
  5. 5.
    E. Eichten, K.D. Lane, Phys. Lett. B 90, 125 (1980). doi: 10.1016/0370-2693(80)90065-9 ADSCrossRefGoogle Scholar
  6. 6.
    B. Holdom, Phys. Rev. D 24, 1441 (1981). doi: 10.1103/PhysRevD.24.1441 ADSCrossRefGoogle Scholar
  7. 7.
    B. Holdom, Phys. Lett. B 150, 301 (1985). doi: 10.1016/0370-2693(85)91015-9 ADSCrossRefGoogle Scholar
  8. 8.
    K. Yamawaki, M. Bando, K.i. Matumoto, Phys. Rev. Lett. 56, 1335 (1986). doi: 10.1103/PhysRevLett.56.1335 ADSCrossRefGoogle Scholar
  9. 9.
    T.W. Appelquist, D. Karabali, L.C.R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986). doi: 10.1103/PhysRevLett.57.957 ADSCrossRefGoogle Scholar
  10. 10.
    V. Miransky, K. Yamawaki, Phys. Rev. D 55, 5051 (1997). doi: 10.1103/PhysRevD.55.5051 ADSCrossRefGoogle Scholar
  11. 11.
    D.D. Dietrich, F. Sannino, Phys. Rev. D 75, 085018 (2007). doi: 10.1103/PhysRevD.75.085018 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    D.D. Dietrich, F. Sannino, Phys. Rev. D 75, 085018 (2007). doi: 10.1103/PhysRevD.75.085018 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003). doi: 10.1016/S0370-1573(03)00140-6 ADSCrossRefGoogle Scholar
  14. 14.
    M. Piai, Adv. High Energy Phys. 2010, 4302 (2010). doi: 10.1155/2010/464302 Google Scholar
  15. 15.
    J. Andersen, O. Antipin, G. Azuelos, L. Del Debbio, E. Del Nobile et al., Eur. Phys. J. Plus 126, 81 (2011). doi: 10.1140/epjp/i2011-11081-1 CrossRefGoogle Scholar
  16. 16.
    C. Nunez, I. Papadimitriou, M. Piai, Int. J. Mod. Phys. A 25, 2837 (2010). doi: 10.1142/S0217751X10049189 MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    D. Elander, C. Nunez, M. Piai, Phys. Lett. B 686, 64 (2010). doi: 10.1016/j.physletb.2010.02.023 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    D. Kutasov, J. Lin, A. Parnachev, Nucl. Phys. B 863, 361 (2012). doi: 10.1016/j.nuclphysb.2012.05.025 MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    D. Levkov, V. Rubakov, S. Troitsky, Y. Zenkevich, arXiv:1201.6368 (2012)
  20. 20.
    L. Anguelova, P. Suranyi, L.R. Wijewardhana, Nucl. Phys. B 862, 671 (2012). doi: 10.1016/j.nuclphysb.2012.05.005 ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    T. Clark, S. Love, T. ter Veldhuis, arXiv:1208.0817 (2012)
  22. 22.
    E.T. Neil, PoS LATTICE2011, 009 (2011) Google Scholar
  23. 23.
    F. Sannino, K. Tuominen, Phys. Rev. D 71, 051901 (2005). doi: 10.1103/PhysRevD.71.051901 ADSCrossRefGoogle Scholar
  24. 24.
    D.D. Dietrich, F. Sannino, K. Tuominen, Phys. Rev. D 72, 055001 (2005). doi: 10.1103/PhysRevD.72.055001 ADSCrossRefGoogle Scholar
  25. 25.
    R. Foadi, M.T. Frandsen, T.A. Ryttov, F. Sannino, Phys. Rev. D 76, 055005 (2007). doi: 10.1103/PhysRevD.76.055005 ADSCrossRefGoogle Scholar
  26. 26.
    G. Aad et al., arXiv:1209.2535 (2012)
  27. 27.
    M.A. Luty, T. Okui, J. High Energy Phys. 0609, 070 (2006). doi: 10.1088/1126-6708/2006/09/070 ADSCrossRefGoogle Scholar
  28. 28.
    S. Catterall, F. Sannino, Phys. Rev. D 76, 034504 (2007). doi: 10.1103/PhysRevD.76.034504 ADSCrossRefGoogle Scholar
  29. 29.
    L. Del Debbio, A. Patella, C. Pica, Phys. Rev. D 81, 094503 (2010). doi: 10.1103/PhysRevD.81.094503 ADSCrossRefGoogle Scholar
  30. 30.
    S. Catterall, J. Giedt, F. Sannino, J. Schneible, J. High Energy Phys. 11, 009 (2008). doi: 10.1088/1126-6708/2008/11/009 ADSCrossRefGoogle Scholar
  31. 31.
    A.J. Hietanen, J. Rantaharju, K. Rummukainen, K. Tuominen, J. High Energy Phys. 0905, 025 (2009). doi: 10.1088/1126-6708/2009/05/025 ADSCrossRefGoogle Scholar
  32. 32.
    A.J. Hietanen, K. Rummukainen, K. Tuominen, Phys. Rev. D 80, 094504 (2009). doi: 10.1103/PhysRevD.80.094504 ADSCrossRefGoogle Scholar
  33. 33.
    F. Bursa, L. Del Debbio, L. Keegan, C. Pica, T. Pickup, Phys. Rev. D 81, 014505 (2010). doi: 10.1103/PhysRevD.81.014505 ADSCrossRefGoogle Scholar
  34. 34.
    T. DeGrand, Y. Shamir, B. Svetitsky, Phys. Rev. D 83, 074507 (2011). doi: 10.1103/PhysRevD.83.074507 ADSCrossRefGoogle Scholar
  35. 35.
    S. Catterall, L. Del Debbio, J. Giedt, L. Keegan, Phys. Rev. D 85, 094501 (2012). doi: 10.1103/PhysRevD.85.094501 ADSCrossRefGoogle Scholar
  36. 36.
    B. Lucini, Philos. Trans. R. Soc. Lond. A 368, 3657 (2010). doi: 10.1098/rsta.2010.0030 MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, Phys. Rev. D 80, 074507 (2009). doi: 10.1103/PhysRevD.80.074507 ADSCrossRefGoogle Scholar
  38. 38.
    L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, Phys. Rev. D 82, 014509 (2010). doi: 10.1103/PhysRevD.82.014509 ADSCrossRefGoogle Scholar
  39. 39.
    L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, Phys. Rev. D 82, 014510 (2010). http://link.aps.org/doi/10.1103/PhysRevD.82.014510. doi: 10.1103/PhysRevD.82.014510 ADSCrossRefGoogle Scholar
  40. 40.
    J. Giedt, E. Weinberg, Phys. Rev. D 85, 097503 (2012). doi: 10.1103/PhysRevD.85.097503 ADSCrossRefGoogle Scholar
  41. 41.
    A. Patella, Phys. Rev. D 86, 025006 (2012). doi: 10.1103/PhysRevD.86.025006 ADSCrossRefGoogle Scholar
  42. 42.
    T. Karavirta, A. Mykkanen, J. Rantaharju, K. Rummukainen, K. Tuominen, J. High Energy Phys. 1106, 061 (2011). doi: 10.1007/JHEP06(2011)061 ADSCrossRefGoogle Scholar
  43. 43.
    F. Bursa, L. Del Debbio, D. Henty, E. Kerrane, B. Lucini et al., Phys. Rev. D 84, 034506 (2011). doi: 10.1103/PhysRevD.84.034506 ADSCrossRefGoogle Scholar
  44. 44.
    L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, PoS LATTICE2011, 084 (2011) Google Scholar
  45. 45.
    D. Nogradi, J. High Energy Phys. 1205, 089 (2012). doi: 10.1007/JHEP05(2012)089 ADSCrossRefGoogle Scholar
  46. 46.
    P. de Forcrand, M. Pepe, U.J. Wiese, arXiv:1204.4913 (2012)
  47. 47.
    M. D’Elia, F. Negro, Phys. Rev. Lett. 109, 072001 (2012). doi: 10.1103/PhysRevLett.109.072001 ADSCrossRefGoogle Scholar
  48. 48.
    V. Miransky, Phys. Rev. D 59, 105003 (1999). doi: 10.1103/PhysRevD.59.105003 ADSCrossRefGoogle Scholar
  49. 49.
    F. Sannino, Phys. Rev. D 80, 017901 (2009). doi: 10.1103/PhysRevD.80.017901 ADSCrossRefGoogle Scholar
  50. 50.
  51. 51.
    M. Teper, Phys. Lett. B 162, 357 (1985). doi: 10.1016/0370-2693(85)90939-6 ADSCrossRefGoogle Scholar
  52. 52.
    B. Lucini, M. Teper, J. High Energy Phys. 0106, 050 (2001). doi: 10.1088/1126-6708/2001/06/050 ADSCrossRefGoogle Scholar
  53. 53.
    B. Alles, M. D’Elia, A. Di Giacomo, R. Kirchner, Phys. Rev. D 58, 114506 (1998). doi: 10.1103/PhysRevD.58.114506 ADSCrossRefGoogle Scholar
  54. 54.
  55. 55.
    T. Banks, A. Zaks, Nucl. Phys. B 196, 189 (1982). doi: 10.1016/0550-3213(82)90035-9 ADSCrossRefGoogle Scholar
  56. 56.
    M. García Pérez, T.G. Kovács, P. van Baal, Phys. Lett. B 472, 295 (2000). doi: 10.1016/S0370-2693(99)01451-3 ADSCrossRefGoogle Scholar
  57. 57.
    C. Michael, P. Spencer, Phys. Rev. D 52, 4691 (1995). doi: 10.1103/PhysRevD.52.4691 ADSCrossRefGoogle Scholar
  58. 58.
    S. Hands, P. Kenny, Phys. Lett. B 701, 373 (2011). doi: 10.1016/j.physletb.2011.05.065 ADSCrossRefGoogle Scholar
  59. 59.
    T. DeGrand, A. Hasenfratz, Phys. Rev. D 80, 034506 (2009). doi: 10.1103/PhysRevD.80.034506 ADSCrossRefGoogle Scholar
  60. 60.
    L. Del Debbio, R. Zwicky, Phys. Lett. B 700, 217 (2011). doi: 10.1016/j.physletb.2011.04.059 ADSCrossRefGoogle Scholar
  61. 61.
    L. Del Debbio, R. Zwicky, Phys. Rev. D 82, 014502 (2010). doi: 10.1103/PhysRevD.82.014502 ADSCrossRefGoogle Scholar
  62. 62.
    T. DeGrand, Y. Shamir, B. Svetitsky, arXiv:1201.0935 (2012)
  63. 63.
    K. Holland, Z. Fodor, J. Kuti, D. Nogradi, C. Schroeder et al., arXiv:1209.0391 (2012)

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceSwansea UniversitySwanseaUK

Personalised recommendations