Advertisement

Observational constraints on Rastall’s cosmology

  • C. E. M. Batista
  • Júlio C. Fabris
  • Oliver F. PiattellaEmail author
  • A. M. Velasquez-Toribio
Regular Article - Theoretical Physics

Abstract

Rastall’s theory is a modification of General Relativity, based on the non-conservation of the stress-energy tensor. The latter is encoded in a parameter γ such that γ=1 restores the usual ∇ ν T μν =0 law. We test Rastall’s theory in cosmology, on a flat Robertson–Walker metric, investigating a two-fluid model and using the type Ia supernovae Constitution dataset. One of the fluids is pressure-less and obeys the usual conservation law, whereas the other is described by an equation of state p x =w x ρ x , with w x constant. The Bayesian analysis of the Constitution set does not strictly constrain the parameter γ and prefers values of w x close to −1. We then address the evolution of small perturbations and show that they are dramatically unstable if w x ≠−1 and γ≠1, i.e. General Relativity is the favored configuration. The only alternative is w x =−1, for which the dynamics becomes independent from γ.

Keywords

Dark Matter Dark Energy Dark Sector Matter Component Luminosity Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank CNPq (Brazil) and FAPES (Brazil) for partial financial support. This research has made use of the CfA Supernova Archive, which is funded in part by the National Science Foundation through grant AST 0907903.

References

  1. 1.
    M. Li, X.-D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011) ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    R.R. Caldwell, M. Kamionkowski, Annu. Rev. Nucl. Part. Sci. 59, 397 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010) ADSGoogle Scholar
  6. 6.
    A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    V. Gorini, A.Y. Kamenshchik, U. Moschella, O.F. Piattella, A.A. Starobinsky, J. Cosmol. Astropart. Phys. 0802, 016 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    O.F. Piattella, J. Cosmol. Astropart. Phys. 1003, 012 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    O.F. Piattella, D. Bertacca, M. Bruni, D. Pietrobon, J. Cosmol. Astropart. Phys. 1001, 014 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    D. Bertacca, M. Bruni, O.F. Piattella, D. Pietrobon, J. Cosmol. Astropart. Phys. 1102, 018 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Campos, J.C. Fabris, R. Perez, O.F. Piattella, H. Velten, arXiv:1212.4136 [astro-ph.CO]
  12. 12.
    W. Zimdahl, Phys. Rev. D 53, 5483 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    R. Colistete, J.C. Fabris, J. Tossa, W. Zimdahl, Phys. Rev. D 76, 103516 (2007) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    W.S. Hipolito-Ricaldi, H.E.S. Velten, W. Zimdahl, Phys. Rev. D 82, 063507 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    O.F. Piattella, J.C. Fabris, W. Zimdahl, J. Cosmol. Astropart. Phys. 1105, 029 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    W. Zimdahl, D. Pavon, Phys. Lett. B 521, 133 (2001) ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    W. Zimdahl, Int. J. Mod. Phys. D 14, 2319 (2005) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    P. Rastall, Phys. Rev. D 6, 3357 (1972) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    P. Rastall, Can. J. Phys. 54, 66 (1976) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    J.C. Fabris, T.C.C. Guio, M. Hamani Daouda, O.F. Piattella, Gravit. Cosmol. 17, 259 (2011) ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Phys. Rev. D 85, 084008 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Fabris, M.H. Daouda, O.F. Piattella, Phys. Lett. B 711, 232 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    M.H. Daouda, J.C. Fabris, O.F. Piattella, AIP Conf. Proc. 1471, 57 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012) CrossRefGoogle Scholar
  25. 25.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982), p. 340 zbMATHCrossRefGoogle Scholar
  26. 26.
    J.C. Fabris, R. Kerner, J. Tossa, Int. J. Mod. Phys. D 9, 111 (2000) MathSciNetADSzbMATHGoogle Scholar
  27. 27.
    L. Perivolaropoulos, arXiv:0811.4684 [astro-ph]
  28. 28.
    M. Hicken, W.M. Wood-Vasey, S. Blondin, P. Challis, S. Jha, P.L. Kelly, A. Rest, R.P. Kirshner, Astrophys. J. 700, 1097 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    M. Capone, V.F. Cardone, M.L. Ruggiero, Nuovo Cimento B 125, 1133 (2011) Google Scholar
  31. 31.
    C.-P. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • C. E. M. Batista
    • 1
  • Júlio C. Fabris
    • 2
  • Oliver F. Piattella
    • 2
    Email author
  • A. M. Velasquez-Toribio
    • 2
  1. 1.Physics DepartmentUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
  2. 2.Departamento de FísicaCCE, UFESVitóriaBrazil

Personalised recommendations