RPV stops bump off the background

  • Roberto Franceschini
  • Riccardo TorreEmail author
Regular Article - Theoretical Physics


We study the 8 TeV LHC reach on pair produced heavy flavored di-jet resonances. Motivated by theories of R-parity violation in supersymmetry we concentrate on a final state with two b-jets and two light jets. We exploit b-tagging to reject the background and discuss its importance at the trigger level to probe light stops. We present kinematical selections that can be used to isolate the signal as a bump in the mass distribution of the candidate resonances. We find that stops with R-parity violating couplings giving rise to fully hadronic final states can be observed in the current run of the LHC. Remarkably, the LHC can probe stop masses well within the range predicted by naturalness.


Light Supersymmetric Particle Light Stop Trigger Level Light Supersymmetric Particle Hadronic Final State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dinko Ferencek, Shahram Rahatlou, Kai Yi for clarifications on the multi-jet searches of CMS and Andrea Coccaro for discussions on the current and future trigger in ATLAS. We also thank Roberto Contino, Andrey Katz and Daniel Stolarski for discussions. We thank the CERN Theory Division for hospitality and support while this research was carried out. RF thanks the Galileo Galilei Institute for hospitality and support during the completion of this work. The work of RF is supported by the NSF Grants PHY-0910467 and PHY-0968854 and by the Maryland Center for Fundamental Physics. The work of RT was partly supported by the Spanish MICINN under grants CPAN CSD2007-00042 (Consolider-Ingenio 2010 Programme) and FPA2010-17747, by the Community of Madrid under grant HEPHACOS S2009/ESP-1473, by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet) and by the ERC Advanced Grant no. 267985, Electroweak Symmetry Breaking, Flavour and Dark Matter: One Solution for Three Mysteries (DaMeSyFla).


  1. 1.
    S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [Inspire] ADSCrossRefGoogle Scholar
  2. 2.
    G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [Inspire] ADSCrossRefGoogle Scholar
  3. 3.
    L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 125 GeV. J. High Energy Phys. 04, 131 (2012). arXiv:1112.2703 [Inspire] ADSCrossRefGoogle Scholar
  4. 4.
    K. Agashe, Y. Cui, R. Franceschini, Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM. arXiv:1209.2115 [Inspire]
  5. 5.
    P. Draper, P. Meade, M. Reece, D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking. Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [Inspire] ADSCrossRefGoogle Scholar
  6. 6.
    S. Dimopoulos, G.F. Giudice, Naturalness constraints in supersymmetric theories with non-universal soft terms. Phys. Lett. B 357, 573–578 (1995). hep-ph/9507282 [Inspire] ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Cohen, D.B. Kaplan, A.E. Nelson, The more Minimal Supersymmetric Standard Model. Phys. Lett. B 388, 588–598 (1996). hep-ph/9607394 [Inspire] ADSCrossRefGoogle Scholar
  8. 8.
    S. Chatrchyan et al. (CMS Collaboration), CMS supersymmetry physics results Google Scholar
  9. 9.
    S. Chatrchyan et al. (CMS Collaboration), Interpretation of searches for supersymmetry. CMS note (2012). CMS-PAS-SUS-11-016 [CDS]
  10. 10.
    R. Barbieri, D. Pappadopulo, S-particles at their naturalness limits. J. High Energy Phys. 10, 061 (2009). arXiv:0906.4546 [Inspire] ADSCrossRefGoogle Scholar
  11. 11.
    C. Brust, A. Katz, S. Lawrence, R. Sundrum, SUSY, the third generation and the LHC. J. High Energy Phys. 03, 103 (2012). arXiv:1110.6670 [Inspire] ADSCrossRefGoogle Scholar
  12. 12.
    R. Essig, E. Izaguirre, J. Kaplan, J.G. Wacker, Heavy flavor simplified models at the LHC. J. High Energy Phys. 01, 074 (2012). arXiv:1110.6443 [Inspire] ADSCrossRefGoogle Scholar
  13. 13.
    M. Papucci, J.T. Ruderman, A. Weiler, Natural SUSY endures. J. High Energy Phys. 09, 035 (2012). arXiv:1110.6926 [Inspire] ADSCrossRefGoogle Scholar
  14. 14.
    Y. Kats, P. Meade, M. Reece, D. Shih, The status of GMSB after 1/fb at the LHC. J. High Energy Phys. 02, 115 (2012). arXiv:1110.6444 [Inspire] ADSCrossRefGoogle Scholar
  15. 15.
    B.C. Allanach, B. Gripaios, Hide and seek with natural supersymmetry at the LHC. J. High Energy Phys. 05, 62 (2012). arXiv:1202.6616 [Inspire] ADSCrossRefGoogle Scholar
  16. 16.
    G. Aad et al. (ATLAS Collaboration), ATLAS physics summary plots Google Scholar
  17. 17.
    Z. Han, A. Katz, D. Krohn, M. Reece, (Light) stop signs. J. High Energy Phys. 08, 083 (2012). arXiv:1205.5808 [Inspire] ADSCrossRefGoogle Scholar
  18. 18.
    Y. Bai, H.-C. Cheng, J. Gallicchio, J. Gu, Stop the top background of the stop search. J. High Energy Phys. 07, 110 (2012). arXiv:1203.4813 [Inspire] ADSCrossRefGoogle Scholar
  19. 19.
    D.E. Kaplan, K. Rehermann, D. Stolarski, Searching for direct stop production in hadronic top data at the LHC. J. High Energy Phys. 07, 119 (2012). arXiv:1205.5816 [Inspire] ADSCrossRefGoogle Scholar
  20. 20.
    T. Plehn, M. Spannowsky, M. Takeuchi, Stop searches in 2012. J. High Energy Phys. 08, 091 (2012). arXiv:1205.2696 [Inspire] ADSCrossRefGoogle Scholar
  21. 21.
    D.S.M. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken, C.-T. Yu, Stops and MET: the shape of things to come. arXiv:1205.5805 [Inspire]
  22. 22.
    Z.-H. Yu, X.-J. Bi, Q.-S. Yan, P.-F. Yin, Detecting light stop pairs in coannihilation scenarios at the LHC. arXiv:1211.2997 [Inspire]
  23. 23.
    C. Kilic, B. Tweedie, Cornering light stops with dileptonic mT2. arXiv:1211.6106 [Inspire]
  24. 24.
    Y. Kats, D. Shih, Light stop NLSPs at the Tevatron and LHC. J. High Energy Phys. 08, 049 (2011). arXiv:1106.0030 [Inspire] ADSCrossRefGoogle Scholar
  25. 25.
    C.S. Aulakh, R.N. Mohapatra, The neutrino as the supersymmetric partner of the majoron. Phys. Lett. B 119, 136 (1982). [Inspire] ADSCrossRefGoogle Scholar
  26. 26.
    L.J. Hall, M. Suzuki, Explicit R-parity breaking in supersymmetric models. Nucl. Phys. B 231, 419 (1984). [Inspire] ADSCrossRefGoogle Scholar
  27. 27.
    G.G. Ross, J.W.F. Valle, Supersymmetric models without R-parity. Phys. Lett. B 151, 375 (1985). [Inspire] ADSCrossRefGoogle Scholar
  28. 28.
    V. Barger, G.F. Giudice, T. Han, Some new aspects of supersymmetry R-parity violating interactions. Phys. Rev. D 40, 2987 (1989). [Inspire] ADSCrossRefGoogle Scholar
  29. 29.
    R. Barbier, C. Bérat, M. Besançon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet, S. Lavignac, G. Moreau, E. Perez, Y. Sirois, R-parity-violating supersymmetry. Phys. Rep. 420, 1–202 (2005). hep-ph/0406039 [Inspire] ADSCrossRefGoogle Scholar
  30. 30.
    H. Dreiner, An introduction to explicit R-parity violation. hep-ph/9707435 [Inspire]
  31. 31.
    G. Bhattacharyya, A brief review of R-parity-violating couplings. hep-th/9709395 [Inspire]
  32. 32.
    Y. Kao, T. Takeuchi, Single-coupling bounds on R-parity violating supersymmetry, an update. arXiv:0910.4980 [Inspire]
  33. 33.
    H.K. Dreiner, F. Staub, A. Vicente, W. Porod, General MSSM signatures at the LHC with and without R-parity. Phys. Rev. D 86, 035021 (2012). arXiv:1205.0557 [Inspire] ADSCrossRefGoogle Scholar
  34. 34.
    U. Sarid, S. Thomas, Mesino–antimesino oscillations. Phys. Rev. Lett. 85, 1178–1181 (2000). hep-ph/9909349 [Inspire] ADSCrossRefGoogle Scholar
  35. 35.
    J. Berger, C. Csáki, Y. Grossman, B. Heidenreich, Mesino oscillation in MFV SUSY. arXiv:1209.4645 [Inspire]
  36. 36.
    J.A. Evans, Y. Kats, LHC coverage of RPV MSSM with light stops. arXiv:1209.0764 [Inspire]
  37. 37.
    E. Nikolidakis, C. Smith, Minimal flavor violation, seesaw, and R-parity. Phys. Rev. D 77, 015021 (2008). arXiv:0710.3129 [Inspire] ADSCrossRefGoogle Scholar
  38. 38.
    C. Smith, Minimal flavor violation as an alternative to R-parity. arXiv:0809.3152 [Inspire]
  39. 39.
    C. Csáki, Y. Grossman, B. Heidenreich, MFV SUSY: a natural theory for R-parity violation. Phys. Rev. D 85, 095009 (2012). arXiv:1111.1239 [Inspire] ADSCrossRefGoogle Scholar
  40. 40.
    B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi, L. Vecchi, On partial compositeness and the CP asymmetry in charm decays. Nucl. Phys. B 867, 429–447 (2013). arXiv:1205.5803 [Inspire] CrossRefGoogle Scholar
  41. 41.
    J.T. Ruderman, T.R. Slatyer, N. Weiner, A collective breaking of R-parity. arXiv:1207.5787 [Inspire]
  42. 42.
    J. Beringer et al. (PDG Collaboration), Review of particle physics. Phys. Rev. D 86, 010001 (2012). [Inspire] ADSCrossRefGoogle Scholar
  43. 43.
    G. Aad et al. (ATLAS Collaboration), Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \(\sqrt{s} = 7\) TeV. arXiv:1210.4826 [Inspire]
  44. 44.
    G. Aad et al. (ATLAS Collaboration), Search for massive colored scalars in four-jet final states in \(\sqrt{s}=7\) TeV proton–proton collisions with the ATLAS detector. Eur. Phys. J. C 71, 1828 (2011). arXiv:1110.2693 [Inspire] ADSCrossRefGoogle Scholar
  45. 45.
    S. Chatrchyan et al. (CMS Collaboration), Search for new physics in the paired dijet mass spectrum. CMS note (2012). CMS-PAS-EXO-11-016 [CDS]
  46. 46.
    S. Chatrchyan et al. (CMS Collaboration), Search for pair-produced dijet resonances in four-jet final states in pp collisions at \(\sqrt{s} = 7\) TeV. arXiv:1302.0531 [Inspire]
  47. 47.
    S. Chatrchyan et al. (CMS Collaboration), Search for multijet resonances in pp collisions at \(\sqrt{s} = 7\) TeV. CMS note (2011). CMS-PAS-EXO-11-001 [Inspire]
  48. 48.
    S. Chatrchyan et al. (CMS Collaboration), Search for multijet resonances in the 8-jet final state. CMS note (2012). CMS-PAS-EXO-11-075 [Inspire]
  49. 49.
    S. Chatrchyan et al. (CMS Collaboration), Search for three-jet resonances in pp collisions at \(\sqrt{s} = 7\) TeV. arXiv:1208.2931 [Inspire]
  50. 50.
    D. Curtin, R. Essig, B. Shuve, Boosted multijet resonances and new color-flow variables. arXiv:1210.5523 [Inspire]
  51. 51.
    Z. Han, A. Katz, M. Son, B. Tweedie, Boosting searches for natural SUSY with RPV via gluino cascades. arXiv:1211.4025 [Inspire]
  52. 52.
    S. Schumann, A. Renaud, D. Zerwas, Hadronically decaying color-adjoint scalars at the LHC. J. High Energy Phys. 09, 074 (2011). arXiv:1108.2957 [Inspire] ADSCrossRefGoogle Scholar
  53. 53.
    Y. Bai, J. Shelton, Composite octet searches with jet substructure. J. High Energy Phys. 07, 067 (2012). arXiv:1107.3563 [Inspire] ADSCrossRefGoogle Scholar
  54. 54.
    C. Kilic, S. Schumann, M. Son, Searching for multijet resonances at the LHC. J. High Energy Phys. 04, 128 (2009). arXiv:0810.5542 [Inspire] ADSCrossRefGoogle Scholar
  55. 55.
    E. Del Nobile, R. Franceschini, D. Pappadopulo, A. Strumia, Minimal matter at the Large Hadron Collider. Nucl. Phys. B 825, 217–234 (2012). arXiv:0908.1567 [Inspire] Google Scholar
  56. 56.
    T. Plehn, T.M.P. Tait, Seeking sgluons. J. Phys. G 36, 075001 (2009). arXiv:0810.3919 [Inspire] ADSCrossRefGoogle Scholar
  57. 57.
    S.Y. Choi, M. Drees, J. Kalinowski, J.M. Kim, E. Popenda, P.M. Zerwas, Color-octet scalars of N=2 supersymmetry at the LHC. Phys. Lett. B 672, 246–252 (2009). arXiv:0812.3586 [Inspire] ADSCrossRefGoogle Scholar
  58. 58.
    D. Choudhury, M. Datta, M. Maity, Search for the lightest scalar top quark in R-parity violating decays at the LHC. J. High Energy Phys. 10, 004 (2011). arXiv:1106.5114 [Inspire] ADSCrossRefGoogle Scholar
  59. 59.
    C. Brust, A. Katz, R. Sundrum, SUSY stops at a bump. J. High Energy Phys. 08, 059 (2012). arXiv:1206.2353 [Inspire] ADSCrossRefGoogle Scholar
  60. 60.
    P.W. Graham, D.E. Kaplan, S. Rajendran, P. Saraswat, Displaced supersymmetry. J. High Energy Phys. 07, 149 (2012). arXiv:1204.6038 [Inspire] ADSCrossRefGoogle Scholar
  61. 61.
    S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150 (1981) [Inspire] ADSCrossRefGoogle Scholar
  62. 62.
    N. Sakai, T. Yanagida, Proton decay in a class of supersymmetric grand unified models. Nucl. Phys. B 197, 533 (1982) [Inspire] ADSCrossRefGoogle Scholar
  63. 63.
    S. Weinberg, Supersymmetry at ordinary energies. masses and conservation laws. Phys. Rev. D 26, 287 (1982) [Inspire] ADSCrossRefGoogle Scholar
  64. 64.
    G. Aad et al. (ATLAS Collaboration), Measurement of the \(t\bar{t}\) production cross section in the final state with a hadronically decaying tau lepton and jets using the ATLAS detector. ATLAS note (2012). ATLAS-CONF-2012-032 [Inspire]
  65. 65.
    G. Aad et al. (ATLAS Collaboration), Measurement of the \(t\bar{t}\) production cross section in the all-hadronic channel in ATLAS with \(\sqrt{s} =7\) TeV data. ATLAS note (2012). ATLAS-CONF-2012-031 [Inspire]
  66. 66.
    G. Aad et al. (ATLAS Collaboration), Measuring the b-tag efficiency in a top-pair sample with 4.7/fb of data from the atlas detector. ATLAS note (2012). ATLAS-CONF-2012-097 [Inspire]
  67. 67.
    S. Chatrchyan et al. (CMS Collaboration), Identification of b-quark jets with the CMS experiment. arXiv:1211.4462 [Inspire]
  68. 68.
    A. Coccaro, Private communication Google Scholar
  69. 69.
    G. Choudalakis, On hypothesis testing, trials factor, hypertests and the BumpHunter. arXiv:1101.0390 [Inspire]
  70. 70.
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. J. High Energy Phys. 06, 128 (2011). arXiv:1106.0522 [Inspire] ADSCrossRefGoogle Scholar
  71. 71.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 07, 012 (2002). hep-ph/0201195 [Inspire] ADSCrossRefGoogle Scholar
  72. 72.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820 [Inspire] ADSzbMATHCrossRefGoogle Scholar
  73. 73.
    S. Ovyn, X. Rouby, V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225 [Inspire]
  74. 74.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1986 (2012). arXiv:1111.6097 [Inspire] CrossRefGoogle Scholar
  75. 75.
    M. Cacciari, G.P. Salam, Dispelling the N 3 myth for the k t jet-finder. Phys. Lett. B 641, 57–61 (2006). hep-ph/0512210 [Inspire] ADSCrossRefGoogle Scholar
  76. 76.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-k t jet clustering algorithm. J. High Energy Phys. 04, 063 (2008). arXiv:0802.1189 [Inspire] ADSCrossRefGoogle Scholar
  77. 77.
    J. Alwall, S. Hoeche, F. Krauss, N. Lavesson, L. Lonnblad, F. Maltoni, M.L. Mangano, M. Moretti, C.G. Papadopoulos, F. Piccinini, S. Schumann, M. Treccani, J. Winter, M. Worek, Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473–500 (2008). arXiv:0706.2569 [Inspire] ADSCrossRefGoogle Scholar
  78. 78.
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, L. Motyka, I. Niessen, Squark and gluino hadroproduction. Int. J. Mod. Phys. A 26, 2637 (2011). arXiv:1105.1110 [Inspire] ADSCrossRefGoogle Scholar
  79. 79.
    N. Greiner, A. Guffanti, T. Reiter, J. Reuter, NLO QCD corrections to the production of two bottom–antibottom pairs at the LHC. Phys. Rev. Lett. 107, 102002 (2011). arXiv:1105.3624 [Inspire] ADSCrossRefGoogle Scholar
  80. 80.
    Z. Bern, G. Diana, L.J. Dixon, F.F. Cordero, S. Hoeche, D.A. Kosower, H. Ita, D. Maitre, K. Ozeren, Four-jet production at the Large Hadron Collider at next-to-leading order in QCD. Phys. Rev. Lett. 109, 042001 (2012). arXiv:1112.3940 [Inspire] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of MarylandCollege ParkUSA
  2. 2.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridCantoblancoSpain
  3. 3.Dipartimento di Fisica e AstronomiaUniversitá di Padova and INFN Sezione di PadovaPadovaItaly
  4. 4.SISSATriesteItaly

Personalised recommendations