Skip to main content
Log in

Leptoquark effects on ν τ propagation in the Earth

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The detection of a ν τ flux in a neutrino telescope would provide a way to measure the cosmic flux without the background of the atmospheric ν μ ’s. Given that effects of new physics could alter the flux arriving at the detector, in this work we consider, as a particular scenario, the effects of leptoquarks on the propagation in the Earth of tau neutrinos. We calculate their contribution to the neutrino–nucleon interaction and their effect on the transport. We show the resulting ν τ flux and compare it with the ν μ flux after through the planet. Finally, we obtain the 90 % C.L. region (Sensitivity Region) where neutrino telescopes will be sensible to the leptoquark effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Deviations from a 1:1:1 ratio of neutrino flavors could arise if the dominant neutrino sources are strongly magnetized (see e.g. Ref. [7]).

References

  1. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  2. M.C. Gonzalez-Garcia, M. Maltoni, Phys. Lett. B 663, 405 (2008)

    Article  ADS  Google Scholar 

  3. K. Mannheim, Astropart. Phys. 3, 295 (1995)

    Article  ADS  Google Scholar 

  4. J. Becker et al., Astropart. Phys. 23, 355 (2005)

    Article  ADS  Google Scholar 

  5. E. Waxman, J.N. Bahcall, Phys. Rev. Lett. 78, 2292 (1997)

    Article  ADS  Google Scholar 

  6. S. Razzaque, P. Meszaros, Phys. Rev. D 68, 083001 (2003)

    Article  ADS  Google Scholar 

  7. P. Lipari, M. Lusignoli, D. Meloni, Phys. Rev. D 75, 123005 (2007)

    Article  ADS  Google Scholar 

  8. F. Halzen, D. Saltzberg, Phys. Rev. Lett. 81, 4305 (1998). arXiv:hep-ph/9804354

    Article  ADS  Google Scholar 

  9. W. Buchmuller, R. Ruckl, Wyler, Phys. Lett. B 191, 442 (1987) [Erratum: Phys. Lett. B 448, 320]

    Article  ADS  Google Scholar 

  10. H. Georgi, S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974)

    Article  ADS  Google Scholar 

  11. J.C. Pati, A. Salam, Phys. Rev. D 10, 275 (1974)

    Article  ADS  Google Scholar 

  12. A.Y. Smirnov, F. Vissani, Phys. Lett. B 380, 317 (1996)

    Article  ADS  Google Scholar 

  13. J. Stupack III (ATLAS Collaboration), EPJ Web Conf. 28, 12012 (2012)

    Article  Google Scholar 

  14. G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2151 (2012)

    Article  ADS  Google Scholar 

  15. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 693, 95 (2010)

    Article  ADS  Google Scholar 

  16. J.K. Mizukoshi, O.J.P. Eboli, M.C. Gonzalez-Garcia, Nucl. Phys. B 443, 20 (1995)

    Article  ADS  Google Scholar 

  17. L.A. Anchordoqui, C.A. Garcia Canal, H. Goldberg, D. Gomez Dumm, F. Halzen, Phys. Rev. D 74, 125021 (2006)

    Article  ADS  Google Scholar 

  18. I. Romero, O.A. Sampayo, J. High Energy Phys. 05, 111 (2009)

    Article  ADS  Google Scholar 

  19. M.M. Reynoso, O.A. Sampayo, Phys. Rev. D 76, 033003 (2007)

    Article  ADS  Google Scholar 

  20. R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic, Astropart. Phys. 5, 81 (1996)

    Article  ADS  Google Scholar 

  21. A. Nicolaidis, A. Taramopoulus, Phys. Lett. B 386, 211 (1996)

    Article  ADS  Google Scholar 

  22. S.I. Dutta, M.H. Reno, I. Sarcevic, Phys. Rev. D 62, 123001 (2000)

    Article  ADS  Google Scholar 

  23. O. Blanch Bigas, O. Deligny, K. Payet, V. Van Elewyck, Nucl. Phys. B, Proc. Suppl. 196, 418–421 (2009)

    Article  ADS  Google Scholar 

  24. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  25. A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981)

    Article  ADS  Google Scholar 

  26. P. Jain, S. Kar, D.W. McKay, S. Panda, J.P. Ralston, Phys. Rev. D 66, 065018 (2002)

    Article  ADS  Google Scholar 

  27. V.A. Naumov, L. Perrone, Astropart. Phys. 10, 239 (1999)

    Article  ADS  Google Scholar 

  28. A. Kappes et al. (IceCube Collaboration), J. Phys. Conf. Ser. 409, 012014 (2013)

    Article  ADS  Google Scholar 

  29. M. Spurio et al. (Km3Net Collaboration), Nucl. Instrum. Methods A 692, 53–57 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank CONICET (Argentina) and Universidad Nacional de Mar del Plata (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar A. Sampayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynoso, M.M., Romero, I. & Sampayo, O.A. Leptoquark effects on ν τ propagation in the Earth. Eur. Phys. J. C 73, 2417 (2013). https://doi.org/10.1140/epjc/s10052-013-2417-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2417-7

Keywords

Navigation