Geometrical CP violation in the N-Higgs-doublet model

  • I. P. IvanovEmail author
  • L. Lavoura
Regular Article - Theoretical Physics


Geometrical CP violation is a particular type of spontaneous CP violation in which the vacuum expectation values have phases which are calculable, i.e. stable against the variation of the free parameters of the scalar potential. Although originally suggested within a specific version of the three-Higgs-doublet model, it is a generic phenomenon. We investigate its viability and characteristic features in models with several Higgs doublets. Our work contains both general results and illustrative examples.


Symmetry Group Higgs Doublet Cyclic Permutation Versus Phase Calculable Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of I.P.I. was supported in part by the grant RFBR 11-02-00242-a, the RF President Grant for scientific schools NSc-3802.2012.2, and the Program of the Department of Physics of the Scientific Council of the Russian Academy of Sciences “Studies of Higgs boson and exotic particles at LHC.” The work of L.L. was supported by Portuguese national funds through the project PEst-OE/FIS/UI0777/2011 of the Fundação para a Ciência e a Tecnologia.


  1. 1.
    G.C. Branco, L. Lavoura, J.P. Silva, CP Violation (Oxford University Press, Oxford, 1999) Google Scholar
  2. 2.
    T.D. Lee, Phys. Rev. D 8, 1226 (1973) ADSCrossRefGoogle Scholar
  3. 3.
    G.C. Branco, A.J. Buras, J.M. Gerard, Nucl. Phys. B 259, 306 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    M. Maniatis, A. von Manteuffel, O. Nachtmann, Eur. Phys. J. C 57, 739 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    M. Maniatis, O. Nachtmann, J. High Energy Phys. 0905, 028 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    P.M. Ferreira, J.P. Silva, Eur. Phys. J. C 69, 45 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, Phys. Rep. 516, 1 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    L. Lavoura, Phys. Lett. B 400, 152 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    G.C. Branco, J.-M. Gérard, W. Grimus, Phys. Lett. 136B, 383 (1984) ADSGoogle Scholar
  10. 10.
    I. de Medeiros Varzielas, D. Emmanuel-Costa, P. Leser, Phys. Lett. B 716, 193 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    I. de Medeiros Varzielas, D. Emmanuel-Costa, Phys. Rev. D 84, 117901 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    I. de Medeiros Varzielas, J. High Energy Phys. 1208, 055 (2012) CrossRefGoogle Scholar
  13. 13.
    A. Degee, I.P. Ivanov, V. Keus, J. High Energy Phys. 1302, 125 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    M. Holthausen, M. Lindner, M.A. Schmidt. arXiv:1211.6953 [hep-ph]
  15. 15.
    B. Petersen, M. Ratz, R. Schieren, J. High Energy Phys. 0908, 111 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    R. Schieren. arXiv:1102.4611 [hep-ph]
  17. 17.
    I.P. Ivanov, V. Keus, E. Vdovin, J. Phys. A 45, 215201 (2012) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    V.A. Solano, J.A. Armario-Sampalo, M.D. Frau-García, P. Real-Jurado, Mathematica notebook IntegerSmithNormalForm, Wolfram Library Archive.

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.IFPAUniversité de LiègeLiègeBelgium
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia
  3. 3.CFTP, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations