Compactified rotating branes in the matrix model, and excitation spectrum towards one loop

  • Daniel N. BlaschkeEmail author
  • Harold C. Steinacker
Regular Article - Theoretical Physics


We study compactified brane solutions of type \(\mathbb{R}^{4} \times K\) in the IIB matrix model, and obtain explicitly the bosonic and fermionic fluctuation spectrum required to compute the one-loop effective action. We verify that the one-loop contributions are UV finite for \(\mathbb{R}^{4} \times T^{2}\), and supersymmetric for \(\mathbb{R}^{3} \times S^{1}\). The higher Kaluza–Klein modes are shown to have a gap in the presence of flux on T 2, and potential problems concerning stability are discussed.


Matrix Model Mass Shell Compactified Extra Dimension Minkowski Signature Klein Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



D.N. Blaschke is a recipient of an APART fellowship of the Austrian Academy of Sciences, and is also grateful for the hospitality of the theory division of LANL and its partial financial support. The work of H.S. is supported by the Austrian Fonds für Wissenschaft und Forschung under grant P24713.


  1. 1.
    N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya, Nucl. Phys. B 498, 467–491 (1997). arXiv:hep-th/9612115 MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Chatzistavrakidis, H. Steinacker, G. Zoupanos, J. High Energy Phys. 09, 115 (2011). arXiv:1107.0265 MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    H. Aoki, Prog. Theor. Phys. 125, 521–536 (2011). arXiv:1011.1015 ADSCrossRefGoogle Scholar
  4. 4.
    H. Steinacker, Prog. Theor. Phys. 126, 613–636 (2012). arXiv:1106.6153 ADSCrossRefGoogle Scholar
  5. 5.
    D. Bak, K.-M. Lee, Phys. Lett. B 509, 168–174 (2001). arXiv:hep-th/0103148 MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Connes, M.R. Douglas, A.S. Schwarz, J. High Energy Phys. 9802, 003 (1998). arXiv:hep-th/9711162 MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    H. Steinacker, Class. Quantum Gravity 27, 133001 (2010). arXiv:1003.4134 MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    H. Steinacker, J. High Energy Phys. 07, 156 (2012). arXiv:1202.6306 MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    H. Steinacker, J. High Energy Phys. 1301, 112 (2013). arXiv:1210.8364 ADSCrossRefGoogle Scholar
  10. 10.
    D.N. Blaschke, H. Steinacker, M. Wohlgenannt, J. High Energy Phys. 03, 002 (2011). arXiv:1012.4344 MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    D.N. Blaschke, H. Steinacker, J. High Energy Phys. 10, 120 (2011). arXiv:1109.3097 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    I. Jack, D.R.T. Jones, New J. Phys. 3, 19 (2001). arXiv:hep-th/0109195 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    S.-W. Kim, J. Nishimura, A. Tsuchiya, Phys. Rev. Lett. 108, 011601 (2012). arXiv:1108.1540 ADSCrossRefGoogle Scholar
  14. 14.
    M.B. Green, J.H. Schwarz, L. Brink, Nucl. Phys. B 198, 474–492 (1982) ADSCrossRefGoogle Scholar
  15. 15.
    E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 123, 231–236 (1983) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    P.S. Howe, K.S. Stelle, Phys. Lett. B 137, 175 (1984) ADSCrossRefGoogle Scholar
  17. 17.
    B. Janssen, Y. Lozano, D. Rodriguez-Gomez, Nucl. Phys. B 711, 392–406 (2005). arXiv:hep-th/0406148 MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    M. Chaichian, A. Demichev, P. Prešnajder, Nucl. Phys. B 567, 360–390 (2000). arXiv:hep-th/9812180 CrossRefGoogle Scholar
  19. 19.
    A. Polychronakos, H. Steinacker, J. Zahn, Brane compactifications and 4-dimensional geometry in the IKKT model. arXiv:1302.3707

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Theory DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations